
Double Trouble: Combined Heterogeneous Attacks
on Non-Inclusive Cache Hierarchies

Antoon Purnal∗

imec-COSIC, KU Leuven
Furkan Turan∗

imec-COSIC, KU Leuven
Ingrid Verbauwhede

imec-COSIC, KU Leuven

∗Equal contribution joint first authors

Abstract
As the performance of general-purpose processors faces di-
minishing improvements, computing systems are increasingly
equipped with domain-specific accelerators. Today’s high-end
servers tightly integrate such accelerators with the CPU, e.g.,
giving them direct access to the CPU’s last-level cache (LLC).

Caches are an important source of information leakage
across security domains. This work explores combined cache
attacks, complementing traditional co-tenancy with control
over one or more accelerators. The constraints imposed on
these accelerators, originally perceived as limitations, turn
out to be advantageous to an attacker. We develop a novel
approach for accelerators to find eviction sets, and leverage
precise double-sided control over cache lines to expose un-
documented behavior in non-inclusive Intel cache hierarchies.

We develop a compact and extensible FPGA hardware
accelerator to demonstrate our findings. It constructs evic-
tion sets at unprecedented speeds (<200µs), outperforming
existing techniques with one to three orders of magnitude. It
maintains excellent performance, even under high noise pres-
sure. We also use the accelerator to set up a covert channel
with fine spatial granularity, encoding more than 3 bits per
cache set. Furthermore, it can efficiently evict shared targets
with tiny eviction sets, refuting the common assumption that
eviction sets must be as large as the cache associativity.

1 Introduction

Heterogeneous computing yields great increases in perfor-
mance and energy efficiency with specific processing capa-
bilities for certain tasks. Recently, FPGAs have emerged in
datacenters for providing such capabilities. They can be used
to accelerate wide-scale data center services, such as ma-
chine learning applications. More interestingly, cloud service
providers give control of FPGAs to customers, who can im-
plement custom accelerators and integrate them into their
applications. After initial steps by Amazon’s AWS, which
already allows users to rent FPGA-supported instances, AMD

and Intel acquired the two main FPGA manufacturers (resp.
Xilinx and Altera). The aim is to aid customers in their transi-
tion through easy and low-overhead integration of software
and hardware. As of yet, their security is not fully mature [57].
At the same time, economic incentives attract infrastructure
providers to multi-tenancy, i.e., hosting multiple (distrusting)
entities on the same physical machine. This work evaluates
the impact of heterogeneous multi-tenancy on the quintessen-
tial shared hardware component: the cache hierarchy.

Caches play a fundamental role in high-performance com-
puting. By serving the majority of memory requests from
fast levels of storage close to the processor (CPU), they over-
come the bottleneck caused by comparatively slow memory.
Equally fundamental, however, is the timing side channel they
introduce, as access latencies depend on access patterns of
co-located processes. While some attack techniques rely on
cache flushes and shared memory [14, 70], others work with
contention [21, 33]. To determine the access patterns of the
victim, contention-based attacks employ so-called eviction
sets, i.e., sets of addresses that contend for cache resources.

Over time, the cache side channel was proven effective
to extract keys from cryptographic implementations [3, 17,
41, 70], retrieve user input [13, 40, 50], or infer kernel se-
crets [12, 16, 23]. Caches have also been used to establish
covert channels [33, 37] and are a key enabler of recent tran-
sient execution attacks [25, 31]. The ongoing switch to non-
inclusive cache hierarchies for high-end CPUs was believed
to thwart several attack classes, but this belief has been dis-
proven [66]. However, non-inclusive hierarchies remain rela-
tively unexplored compared to their inclusive counterparts.

The lion’s share of the cache attack literature considers
CPU processes targeting other processes. Recent studies in-
troduced some heterogeneity, whether it be peripheral devices
attacking CPU processes [11,27,62], or CPU processes attack-
ing peripherals [55]. This work identifies combined microar-
chitectural attacks as a threat deserving further examination
(cf. Table 1). It is becoming increasingly common to control
multiple entities (i.e., devices), which differ in computational
capabilities and access to the memory subsystem.

Table 1: Positioning of threat models considered in this work

Attacker
Victim CPU Secondary

CPU
Last-Level Cache [21, 33, 70]

Packet Chasing [55]Coherence Directory [66]
This work

Secondary Grand Pwning Unit [11] NetCAT [27]JackHammer [62]

Combined This work

Intel’s Data-Direct IO (DDIO) [18] is a prominent technology
that gives PCIe devices direct access to the CPU’s last-level
cache (LLC). For instance, existing FPGA-accelerated cloud
platforms make use of PCIe-based FPGA accelerator cards.
DDIO provokes an interesting dynamic in the cache hierarchy,
which CPU processes observe through the lens of their private
caches, whereas PCIe (DDIO) devices, from now on referred
to as secondary devices, observe it directly through the LLC.
This double view is especially interesting in non-inclusive
cache hierarchies, where the LLC is less amenable to direct
interaction [66]. This work investigates the collusion of mi-
croarchitectural attackers in heterogeneous systems, applied
to the widely-used DDIO technology, which already has been
shown to bear security implications [27, 55, 62].

In light of the growing interest in heterogeneous comput-
ing, this paper seeks to answer the following questions:

How precisely can combined attackers control shared cache
state? Can the constraints imposed on DDIO devices turn out
to be advantageous? Do common assumptions remain valid
in the face of combined attackers?

In this paper, we study combined heterogeneous attacks on
emerging non-inclusive Intel cache hierarchies. We identify a
set of properties governing the interaction between the CPU
and DDIO devices. Attacks originating from secondary de-
vices, e.g., network cards [27] or FPGAs [62], perceive these
properties as limitations. For combined attackers, who can
dispatch between CPU and secondary device, they enable
otherwise infeasible techniques. Ultimately, this leads us to
challenge common assumptions, as summarized in Table 2.
When relevant, we instantiate secondary devices with FPGAs.
Contributions. Summarized, our main contributions are:

- We explore key primitives for combined cache attacks
and discover a new DDIO-related structure in the LLC.

- We develop a fast and reliable procedure for secondary
devices to find eviction sets in non-inclusive Intel caches.

- We leverage precise LLC manipulation for reliable evic-
tion with fewer congruent addresses than there are ways.

- We design an FPGA accelerator that implements the
aforementioned techniques and make it openly available:

https://github.com/KULeuven-COSIC/Double-Trouble

Table 2: Challenging common understanding

Common Understanding Our Finding

Eviction set construction
reached speed limits [60]

Accelerating Eviction Set
Construction (Section 4)

Secondary devices only allocate
to DDIO region in LLC [18, 27, 62]

Discover undocumented
DDIO+ region (Section 5)

Non-inclusive LLC:
needs directory conflicts [66]

Eviction from private cache
through LLC (Section 6.1)

Cannot evict from remote socket
without flush [22, 68]

Flushless cache attacks
across sockets (Section 6.1)

Minimal eviction set is as
large as associativity [33, 60]

Reliable Eviction with Tiny
Eviction Sets (Section 6.2)

Amplitude-based encoding
precluded by self-eviction [37]

Modulation and Multi-bit
Symbols (Section 8.2)

2 Background

2.1 Heterogeneous Computing
As the limits of general-purpose computers are pushed,
domain-specific computation gains importance. Companies
have started playing games with custom chips, combining
CPUs with accelerators, e.g., for machine learning or net-
working. Instead of inefficiently increasing CPU core counts,
these architectures complement CPUs with custom acceler-
ators, offering high-performance computation, often at low
power. Popular examples are Google’s TPU and Apple’s M1.

On the server side, FPGA-attached CPUs serve the grounds
to play this game. With their hardware programmability,
FPGAs allow users to implement custom accelerators for their
specific needs. Some cloud providers (e.g., AWS) already pro-
vide homemade accelerators to customers, or a marketplace
where accelerators can be sold or rented. CPU giants have
acquired FPGA manufacturers (Intel-Altera, AMD-Xilinx),
and are working on tight integration of CPUs and FPGAs.

Today, these platforms attach FPGAs to CPUs as PCIe ac-
celerator cards. On the CPU side, kernel drivers and APIs
enable applications to communicate with their hardware ac-
celerators. On the FPGA side, Control and Status Registers
(CSRs) offer basic data transfers, and Direct Memory Access
(DMA) allows the FPGA to access system memory. In this pa-
per, we focus on the latter, as it interacts with the CPU memory
subsystem. Although we focus on FPGA-specific terminol-
ogy, many conclusions carry over to other PCIe-connected
devices, e.g., Network Interface Cards (NICs) or Thunderbolt.

2.2 Cache Organization
Modern cache hierarchies comprise multiple levels. Lower
cache levels are closer to the CPU, and are usually smaller
and faster than higher levels. Typical Intel processors have
three cache levels, with L1 and L2 caches private to each core,
and the last-level cache (L3, or LLC) shared between cores.

https://github.com/KULeuven-COSIC/Double-Trouble

Caches are organized as arrays of cache lines of, typically,
64 bytes. Most caches are set-associative, meaning that they
are partitioned in sets. Each cache line maps to exactly one
set, based on an indexing function applied to their address.
The associativity refers to the number of lines that can reside
simultaneously in the same set, i.e., the number of ways, W.

When a requested line is not present in a cache (i.e., a
cache miss), it is usually installed after propagating the request
to the next level. In the absence of empty ways, the cache
replacement policy determines the line to evict in favor of the
incoming one. Lines mapped to the same set are congruent.
Contending for the same resource, they can evict each other.

The inclusion invariants of the cache hierarchy determine
whether cache lines can reside simultaneously in multiple
levels. A cache is inclusive w.r.t. another (lower-level) cache
if every line in the latter must also be present in the former.
Exclusive caches cannot have lines in common. Caches that
do not satisfy either invariant are non-inclusive. Historically,
Intel LLCs are inclusive, but to keep up with increasing core
counts, non-inclusive LLCs are becoming commonplace [38].

Contemporary LLCs are partitioned in slices, with an un-
documented and architecture-dependent mapping [36]. For
large core counts, the slices are interconnected with a mesh
architecture [38]. High-end systems can have multiple CPU
sockets, connected with a coherent memory hierarchy.

2.3 Data-Direct IO (DDIO)
Direct Cache Access (DCA) [15] is a mechanism developed
for the fast exchange of Ethernet frames between CPUs and
Network Interface Cards (NICs). Instead of accessing main
memory, NICs interact directly with the CPU’s LLC to allevi-
ate memory bottlenecks and cache thrashing, improving I/O
performance [9,10,19,29,34]. DDIO [18] is Intel’s implemen-
tation of DCA, available on server-grade CPUs. It is enabled
on such CPUs by default, and PCIe devices (NICs, FPGAs,
etc.) transparently interact with the LLC instead of memory.

Unfortunately, specific DDIO behavior is largely undocu-
mented, especially for non-inclusive cache hierarchies. Some
works partially reverse-engineer it [27,62]. Section 3.2 covers
known and yet unknown DDIO behavior in detail.

2.4 Cache Attacks
The observation that the execution time of a program depends
on its control flow and interaction with the cache hierarchy
characterized the first generation of cache attacks [3, 26, 43].
Later, the case was made for co-located attackers, i.e., those
running code on the same physical platform as potential vic-
tims. By manipulating and observing the cache state, they
observe much more fine-grained access patterns [41, 44].

Arguably the strongest technique is FLUSH+RELOAD,
where the attacker flushes a target line from the cache (e.g., us-
ing clflush on x86), and later reads it to determine whether

the victim accessed it in the meantime. In the absence of
clflush [30], an attacker can evict the shared line instead,
which is referred to as EVICT+RELOAD [13]. Both tech-
niques require shared memory with the victim (e.g., KSM [2]).
In contrast, PRIME+PROBE only relies on cache contention.
In particular, the attacker occupies an entire cache set with
her own lines, waits, and afterwards loads these lines again.
If another process has accessed lines congruent to those of
the attacker, this will be reflected in the attacker’s access la-
tency. Due to its low requirements, PRIME+PROBE has been
mounted from restricted environments [27, 40].

The target cache needs to be shared between attacker and
victim. Initial attacks considered same-core attackers and
targeted the L1 cache [41,44]. Later attacks managed to target
the LLC [21, 33, 70], enlarging the threat to cross-core attacks.

Until recently, cross-core EVICT+RELOAD and PRIME+
PROBE relied explicitly on the inclusive nature of the LLC.
In this case, eviction from the LLC implies invalidation in all
lower-level caches to preserve the inclusion invariant [21, 33].
This allows to evict lines from other cores’ private caches.
Non-inclusive Caches. In non-inclusive caches, lines in L2
are not necessarily present in the LLC. In fact, they rarely
are, since loads from memory are installed in L1/L2, skipping
the LLC. Conversely, contention on the LLC alone does not
invalidate lines in the lower-level caches of other cores. To
overcome this problem for non-inclusive Intel CPUs, Yan
et al. [66] propose contention on the coherence directory
(CD), also referred to as the snoop filter. The CD tracks lines
present in lower-level caches, and is inclusive to accelerate
coherence transactions with other cores [72]. On Intel CPUs,
the LLC and CD share the same slice and set mapping.

This paper considers cross-core attacks in non-inclusive
Intel caches. The targets are the LLC and CD, and lines are
congruent when they share the same LLC/CD set and slice.

2.5 Eviction Set Construction
Prior to a PRIME+PROBE or EVICT+RELOAD attack, the at-
tacker constructs eviction sets, i.e., sets of congruent addresses.
If physical addresses and their mapping to LLC/CD sets and
slices are known, finding congruent addresses is trivial.

In practice, however, the attacker is limited on both fronts.
First, unprivileged processes observe virtual addresses, orga-
nized in 4 KiB or 2 MiB pages, and do not know the virtual-

06121721

Set index bits for a 2048-set LLC:

Small page (4 KiB):

Huge page (2 MiB):

Figure 1: Control over cache set index depends on page sizes

Table 3: Platforms Used for Experimentation

Platform CPU Arch. Core FPGA
Intel Xeon Count Intel PAC

ACE 1 Plat. 8180 SKL-SP 28 A10
ACE 2 Plat. 8280 CLX-SP 28 S10 (x2)
Local Silver 4208 CLX-SP 8 A10 (x2)

SKL: Skylake, CLX: Cascade Lake

Cache Info Ways Size per Core

L1 Core-Private 8 32 KB
L2 Core-Private 16 1 MB
LLC Shared, Non-Inclusive 11 1.375 MB

to-physical address translation. Therefore, physical address
control is limited to the page frame bits, which are unaffected
by translation (cf. Figure 1). Second, the slicing function is
undocumented and architecture-dependent [36, 66].

Liu et al. [33] construct eviction sets for inclusive LLCs.
Vila et al. [60] accelerate it by improving the time complexity
from quadratic to linear. Yan et al. [66] find LLC/CD eviction
sets in non-inclusive Intel caches. To that end, they introduce
helper sets that are congruent in L2 but not the LLC. Tech-
niques for non-inclusive caches are currently underdeveloped
w.r.t. inclusive caches. Moreover, because of the indirect in-
teraction with the LLC, their noise-resilience is unclear.

2.6 Experimental Setup
We work remotely on Intel Labs (IL) Academic Compute En-
vironment (ACE), with dual-socket Xeon Platinum CPUs (28
cores/slices per socket). We also use a local lab setup, with
dual-socket Xeon Silver CPUs (8 cores/slices per socket).
All platforms have non-inclusive LLCs. The platforms uti-
lize Intel’s PCIe-based FPGA accelerator cards called Pro-
grammable Acceleration Cards (PACs), either with Arria 10
(A10) or Stratix 10 (S10) family FPGAs. Table 3 summarizes
the platforms and their cache hierarchy.

A basic FPGA design can transparently interact with the
memory subsystem over DDIO. At a high level, it can read and
write to memory, and distinguish between access latencies
(L2/LLC/RAM) based on immutable timing sources. A detailed
description of our implementation is deferred to Section 7.

3 Double Trouble: Combined Cache Attacks

3.1 Threat Model
The main threat model in this work is the combined attacker
(ACMB). As indicated in Figure 2, she controls at least one CPU
core and a secondary device connected over DDIO. In our
case, an FPGA is used as the secondary device. The attacker

Core Core

L1 L1

L2 L2

LLC

Core Core

L1 L1

L2 L2

LLC

RAM

FPGA FPGA

PCIe Bus

VCC VCS V2DASTD
ACMB

Figure 2: Combined attackers control a CPU process and sec-
ondary device. We consider three victim types (VCC,VCS,V2D).

can dispatch operations to software and hardware, and share
memory between them. For completeness, we also consider
traditional attackers (ASTD) without a secondary device.

The attacker has no privileges and does not know the slice
mapping. We do not assume the availability of a clflush in-
struction (in accordance to, e.g., [66]). Although our findings
do not strictly require huge memory pages, we assume them
to be available, as they are enabled by default on server-grade
platforms with FPGA acceleration (e.g., OPAE [20]).

To navigate the heterogeneity in attacker and victim prop-
erties, Table 4 summarizes our main results and indicates the
configurations to which they apply. We distinguish between
the degree of co-location: attacker and victim running on
different cores (VCC), on different sockets (VCS), or a victim
secondary device attached to the attacker socket (V2D).

Section 4 introduces a new algorithm for swift and reliable
eviction set construction, overturning the limitations of sec-
ondary devices. Section 5 exposes undocumented behavior in
the LLC, which we use to obtain an intra-cache-set granularity.
Section 6 shows how standard attackers can evict shared lines
without CD contention, and how combined attackers can do
so with tiny eviction sets. These results require shared mem-
ory between the attacker and victim. Section 7 describes our
implementation of an FPGA hardware accelerator, which is
evaluated in Section 8.

Table 4: Applicability of the main results of this work

Capabilities Attacker Victim Shared
MemoryASTD ACMB VCC VCS V2D

Eviction Set Finding 3 3 3 3
Intra-set Granularity 3 3 3
Eviction without CD 3 3 3 3 3
Reduced Eviction 3 3 3 3

3.2 Key Properties
3.2.1 Spatially Limited Interaction With LLC

To prevent thrashing, DDIO devices only interact with a frac-
tion of the last-level cache (LLC) [18]. Lines read by the
secondary device are not allocated in the LLC [27, 62], but
they are served from the LLC if already present. Lines written
by the secondary device are allocated, but only to a limited
number of ways (two by default) in every set [10, 27].

In contrast to previous suggestions [18,27], we find that the
replacement policy is not LRU (cf. rationale in Appendix C).
Non-Default DDIO Configurations. The number of LLC
ways to which DDIO can write-allocate is, by default, two [10,
27]. However, this can be configured in the IIO_LLC_WAYS
Model Specific Register (MSR) [10, 32], with a bitmask that
represents the cache ways used by DDIO. The minimal and de-
fault setting is 0x600. More ways can be activated by setting
more bits, provided that the selected ways are consecutive. In
this paper, we denote the number of DDIO ways as D.

The default configuration (D=2) is, arguably, the most im-
portant to study from a security point of view. In accordance
with prior studies [27, 62], we focus our attention on this con-
figuration, and assume it unless otherwise indicated. However,
when relevant, we generalize our findings to 2≤ D≤W .

Property #1: Spatially limited LLC interaction.
Secondary devices interact directly with the LLC. Only
writes trigger cache line placement, which is statically
constrained to a limited number of ways (two by default).

3.2.2 Reading Without Consequences

The property that secondary devices do not read-allocate in the
cache has an underappreciated corollary: it allows attackers
to query the cache state without disturbing it. We illustrate
the implications of this power with two relevant examples.
Example: Counting LLC Entries. Consider how to infer
how many (out of N) lines are cached in the LLC. This can be
done by measuring the access latency of all N lines, counting
those within the predetermined LLC timing range.

CPU-only attackers are limited in their accuracy. Consider
the case where at least one line is not cached. Measuring the
access latency of this line allocates it in the cache. In this pro-
cess, it may evict the other lines, perturbing the measurement.

The combined attacker, in contrast, can measure the cache
state reliably, i.e., a partial measurement does not endanger
the validity of the full measurement, and repetitively, i.e.,
several measurements of the same state can be combined.
Example: Eviction Candidate. For lines already in the LLC,
do secondary reads influence the eviction candidate, i.e., the
line to be evicted upon installation of a new congruent line?

Consider Figure 3, where X0, X1 and X2 are congruent lines.
X0 and X1 are placed in the DDIO region with secondary writes.

Figure 3: Secondary reads do not change eviction candidates.

X1 is written repeatedly to ensure that X0 is the eviction can-
didate. Indeed, we observe that writing X2 evicts X0.

In a first experiment, the secondary device writes a few
times to X0. We observe that placement of X2 now evicts X1,
so the earlier write to X0 changed the eviction candidate to X1.
The second experiment performs several reads of X0. If the
replacement policy records these reads, the eviction candidate
should change to X1. Still, we find that placing X2 always
evicts X0. We conclude that secondary reads, in contrast to
writes, do not influence the LLC replacement policy state.

Finding #2: Non-destructive secondary reads.
Secondary reads are non-destructive. Reading uncached
lines does not trigger cache allocation, and reading LLC
lines does not influence their replacement policy state.

3.2.3 Two-sided Cache Hierarchy Manipulation

Combined attackers can approach non-inclusive cache hierar-
chies from two sides. We now cover known and novel primi-
tives to trigger movement between L21 and the LLC. Moving
or copying lines to the LLC is useful, as lines evicted from
the LLC are invalidated in all cache levels [66]. Moving lines
from the LLC to L2 is useful to invalidate specific LLC ways.
Our repository supports these findings with experiments.
L2 to LLC. The most straightforward way to move an L2 line
to the LLC is to access sufficient addresses mapped to the
same L2 set (cf. Figure 4a). This technique can only be used
by processes running on the core tied to the specific L2 cache.

Yan et al. [66] demonstrate the eviction of lines from re-
mote private caches, i.e., L2 caches associated with other cores.
They do this by generating contention on the coherence di-
rectory CD (cf. Figure 4b), the inclusive structure co-located
with the LLC that keeps track of lines in L2 caches.

On our test platforms, we observe that when a line is ac-
cessed by two processes on different cores, it is copied to
the LLC. The line then co-exists in the LLC and both private
L2 caches (cf. Figure 4d). We find this novel technique to be
accurate and simple to move a target line to the LLC. However,
note that this primitive is limited to attacker-readable lines.

Specifically for the combined attacker, there is yet another
primitive available (cf. Figure 4e). The secondary device
writes the line, which moves it to the LLC. Now dirty, the line
is invalidated from all other caches to maintain coherence.
Note that this primitive is limited to attacker-writable lines.

1Since L2 is inclusive w.r.t. L1, for our purposes they can be consolidated.

(a) L2 Contention: L2→ LLC (b) CD Contention: L2→ LLC (c) CPU Write: LLC→ L2

(d) Shared Access: L2→ LLC (e) Secondary Write: L2→ LLC (f) CPU Read: LLC→L2 (or→L2&LLC)

Figure 4: Techniques for combined attackers to manipulate the cache hierarchy.

LLC to L2. A line can be moved from the LLC to L2 by
read or write requests from CPU cores. Lines that are written
(Figure 4c) move from the LLC to L2, invalidating the LLC line
for coherence purposes [67]. If the line is read (Figure 4f), we
find that lines that only exist in the LLC (e.g., in modified or
exclusive state) move back to L2 and are invalidated in the LLC.
In contrast, lines present in multiple caches (e.g., in shared or
forward state) are copied to L2, i.e., they remain allocated in
the LLC. As these observations are partially inconsistent with
prior work [66, 67], we share our rationale in Appendix B.

Replacement policies prefer to install incoming lines in
empty ways (if present) to avoid unnecessary eviction of
useful lines. Some primitives are able to produce empty ways
by invalidation. We refer to these ways as magnet ways.

Finding #3: Precise manipulation of cache hierarchy.
Combined attackers can accurately migrate lines between
cache levels, and invalidate them from selected caches.

4 Fast Eviction Set Finding using DDIO

The eviction set construction problem is the following: given
a target cache line, find EV congruent lines in the designated
cache (of associativity W). We review existing algorithms for
the LLC, and expose a new method for combined attackers,
enabled by limitations of secondary devices (#1, #2).

4.1 Reduction Algorithms

Figure 5 depicts the structure of traditional eviction set con-
struction algorithms. First, an initial set of candidate addresses
is constructed [33], for which the size depends on attacker
control over physical address bits [60]. Then, it is reduced to

Figure 5: Traditional reduction-based algorithms

a minimal eviction set, i.e., a set, typically of size EV ≥W ,
that no longer contains any non-congruent addresses.

The reduction is an iterative procedure based on a congru-
ence test that removes a portion of the current set and tests
whether the remainder still evicts the target. If so, the portion
is not necessary for eviction and can be discarded. Initial al-
gorithms for inclusive caches [21,33,40] remove one element
at a time, leading to quadratic complexity in the initial set
size. Vila et al. [60] propose to perform the congruence test
on groups of addresses instead, achieving linear complexity.

Yan et al. [66] develop a reduction algorithm for non-
inclusive Intel LLCs with a custom congruence test (cf. Sec-
tion 2.4). Their algorithm has quadratic complexity, but may
be amenable to similar improvements [60]. However, it ap-
pears to need several eviction and measurement iterations to
cope with the complications of non-inclusive caches.

4.2 Acceleration with Discover-Expand

Secondary devices generally perceive a smaller LLC associa-
tivity (#1), with D=2 by default. As a result, D+1 congruent
addresses are sufficient to manifest contention. In addition,
the non-destructive reads (#2) enable a congruence test that
determines whether a single address is congruent with a target,
instead of whether a pool of addresses contains some that are
congruent. These properties lead to an effective search algo-
rithm, based on expansion rather than reduction (cf. Figure 6).

Figure 6: Expanding eviction set construction. For D= 2,
Discover only needs to find a single congruent address.

The algorithm takes as input a target address (TARGET), de-
sired eviction set size (EV), and stride representing attacker-
controllable address bits (STRIDE). The output is an eviction
set, i.e., EV addresses that are mapped to the same LLC set and
slice as TARGET. The algorithm does not build an initial set,
and comprises two phases: Discover obtains the first D−1
congruent addresses, and Expand completes the eviction set.

Algorithm 1 Eviction Set Construction: Discover finds the
first D−1 congruent addresses, Expand finds the others

Di
sc
ov
er

Ex
pa
nd

a new address from
search space with
STRIDE

DISCOVER_FOUND:
addresses found
in Discover,
es[0,1,.,D-2]

Input: TARGET: an address for the eviction set, EV: desired eviction
set size, STRIDE: indicates attacker-controlled bits
Output: es eviction set

1: es[]← empty list
2: do
3: secondary_write(TARGET)
4: secondary_write(es[0,1,.,len(es)-1])
5: do
6: TEST_ADDRESS← new candidate
7: secondary_write(TEST_ADDRESS)
8: while secondary_read(TARGET) is fast
9: append TEST_ADDRESS to es

10: while len(es) < D-1
11: do
12: secondary_write(TARGET)
13: secondary_write(es[0,1,.,D-2])
14: do
15: TEST_ADDRESS← new candidate
16: secondary_write(TEST_ADDRESS)
17: while secondary_read(TARGET) is fast
18: append TEST_ADDRESS to es
19: while len(es) < EV

4.2.1 Discover: Finding the First D−1 Addresses

First, the Discover phase writes TARGET, installing it in the
LLC’s DDIO ways. Then, it iteratively writes a new candi-
date address and afterwards measures the access latency of
TARGET. If the latter has been evicted (from LLC to RAM), the
candidate is determined to be congruent with it.

As the DDIO associativity is D, it is expected that D−1
congruent test addresses are overlooked for every congruent
candidate that is actually added to the eviction set. However,
as soon as D−1 elements have been found (a set denoted
as DISCOVER_FOUND), the Discover phase can terminate in
favor of the more efficient Expand phase.

4.2.2 Expand: Finding More Addresses

The Expand phase writes TARGET and DISCOVER_FOUND to
occupy all D DDIO ways. Then, similar to Discover, new
candidates are written, each time measuring the access latency
of TARGET to determine whether the candidate is congruent.
This step is repeated to obtain the full eviction set.

4.2.3 Algorithmic Complexity

The stride of the search depends on control over physical
address bits (cf. Section 2.5) and the number of LLC/CD slices
(cf. Section 2.2). As the slice mapping is unknown, candidates
can, at best, be selected based on their LLC set index bits.

Our test LLCs have 2048 sets with 8 or 28 slices (SLICES).
Huge pages allow to configure all set index bits, so the congru-
ence probability for candidate addresses is SLICES−1, assum-
ing lines are distributed among slices uniformly at random.

The congruence probability directly relates to the expected
number of candidates to test in the Expand phase. In the
Discover phase, however, the first D−1 congruent candidates
may be missed. In first order, the expected number of candi-
dates to test is (D−1) · [D ·SLICES]+(W−D+1) · [SLICES].
Section 8.1 evaluates accuracy and speed in practice.

Algorithm 2 Verification algorithm to check congruence

TARGET and CANDIDATE
are interchanged in
consecutive runs

Input: TARGET, DISCOVER_FOUND, CANDIDATE
Output: boolean: are the inputs congruent?

1: secondary_write(TARGET);
2: secondary_write(DISCOVER_FOUND);
3: secondary_write(CANDIDATE);
4: return true if secondary_read(TARGET) is fast

4.2.4 Low-level Aspects

Replacement Policy. The simplified algorithm assumes LRU
replacement. However, we find that repeated writes influ-
ence the eviction candidate (cf. Appendix C). To ensure that
TARGET is the eviction candidate, the accelerator performs
the secondary_write on lines 4/13 of Algorithm 1 twice.
Verification. To increase robustness against false positive
errors (e.g., due to noise), Algorithm 2 optionally performs ad-
ditional checks. It is called with TARGET, DISCOVER_FOUND
and the address to be tested, and performs two permuted veri-
fication tests. This way, a false positive candidate will only
pass if there is noise in two different cache sets.

As the verification needs D+1 addresses (including
TARGET), the accuracy of the DISCOVER_FOUND set itself
is confirmed together with the first address of the Expand
phase. If it fails, both addresses are discarded and Discover
is restarted. As soon as DISCOVER_FOUND is verified, all
subsequent addresses can be verified in isolation. To increase
confidence, multiple verification repetitions can be performed.

Table 5: Access sequences to cache line L to prepare its state,
with the resulting cache level for L, whether L is modified,
and whether a secondary write allocates L to the DDIO region

Access Sequence Level Modified DDIO

1 sw_flush(L) RAM 3
2 sw_write(L) L2 3
3 sw_flush(L); sw_read(L) L2 3
4 hw_write(L); sw_read(L) L2 3

(sw_* and hw_* denote actions by CPU and secondary device, resp.)

Write Limitation. The routine requires write access to
TARGET. However, an LLC-congruent address to the intended
target can be used as input to the algorithm (cf. Section 8.3).

5 Structure of the LLC Set

This section revisits the interaction between DDIO devices
and the LLC (#1). Secondary writes to uncached lines are
known to allocate in the LLC, specifically to one of the DDIO
ways [10, 27, 62]. It is worth investigating whether this behav-
ior holds for lines that are already cached, e.g., in L2. Contrary
to expectation, it appears to depend on the state of the line.
Another Region in the LLC Set. Consider a test set of N
LLC-congruent addresses (N ≥ 2). To fix their cache level
and state, the elements of the test set first undergo the access
sequences (1 - 4) as given by Table 5. Then, they are written
by the secondary device. Finally, the secondary device counts
how many remain in the LLC (cf. Section 3.2.2). All read and
write operations are repeated to remove the influence of the
replacement policy, and we consider 10000 measurements.

For all access sequences, we observe that subsequent sec-
ondary writes allocate to the LLC, consistent with current un-
derstanding. However, consider what happens as we now ap-
ply contention to the DDIO region. This contention is achieved
with secondary writes to another uncached contention set (ac-
cess sequence 1 , which is known to lead to DDIO allocation).

For sequences 1 and 3 , no test lines remain after DDIO
contention (i.e., they were allocated to the DDIO region). How-
ever, for sequences 2 and 4 , both addresses remain in the
LLC (i.e., they must have been placed elsewhere). In con-
clusion, cache lines in specific states are secondary write-
allocated to the LLC, but outside of the DDIO region.

In the remainder of this work, we refer to this unknown
region as the DDIO+ region. We can only speculate on the
condition to be placed in this region, but we observe modified
lines to be assigned to it (e.g., sequences 2 and 4). The
rationale for this behavior is not immediately obvious and we
assume it to be an undocumented performance optimization.
Associativity. We now infer the structure of the LLC set, start-
ing with the associativity of the DDIO and DDIO+ subregions.

For the DDIO region, the secondary device writes N congru-
ent addresses and counts how many remain in the LLC. The

associativity is the largest N for which none are consistently
evicted. As expected, we observe an associativity of D.

For the DDIO+ region, we perform a similar experiment,
but with access sequence 4 preceding the secondary write.
We observe a DDIO+ associativity of 2, irrespective of D.

The LLC set. To learn which ways belong to the DDIO/DDIO+

region on the Xeon Silver, we extend the mapping technique
of Farshin et al. [10]. In particular, it uses Intel CAT [19] to
let a software process evict specific LLC ways as specified by
a bitmask. The correlation between the bitmask and evictions
of DDIO/DDIO+ lines reveals the composition of these regions.

For the DDIO region, we use a CAT mask that spans D ways,
i.e., the DDIO associativity. First, the secondary device writes
D test lines. Then, software generates contention in the ways
specified by the mask. Finally, the secondary device counts
the test lines in the LLC. The mask corresponding to the D
leftmost ways results in all test lines being evicted; shifting it
one to the right evicts D−1 lines, etc. No lines are evicted if
the mask does not overlap with any of the D leftmost ways.

For the DDIO+ region, we use a similar methodology with
a 2-way CAT mask. Access sequence 4 is used to produce
lines in the DDIO+ state. The CAT mask corresponding to the
2 rightmost ways results in both DDIO+ lines being evicted.

LLC Model. Figure 7 summarizes the inferred LLC structure
for our local platform (Xeon Silver). CPU memory traffic
allocates to all ways in the set. Secondary devices only write-
allocate to the DDIO or DDIO+ regions (depending on the state
of the written line). The DDIO region is contiguous and has
associativity D, growing from the most-significant ways. The
DDIO+ region is contiguous and has associativity 2, and covers
the least-significant ways. In the event that the DDIO and
DDIO+ regions overlap (i.e., for D≥ 10), the least-significant
ways accommodate both lines in the DDIO and DDIO+ state.

D = 2D = 2D = 2D = 2D = 2 10 9 8 7 6 5 4 3 2 1 0
D = 3 10 9 8 7 6 5 4 3 2 1 0
D = 4 10 9 8 7 6 5 4 3 2 1 0
D = 5 10 9 8 7 6 5 4 3 2 1 0
D = 6 10 9 8 7 6 5 4 3 2 1 0
D = 7 10 9 8 7 6 5 4 3 2 1 0
D = 8 10 9 8 7 6 5 4 3 2 1 0
D = 9 10 9 8 7 6 5 4 3 2 1 0
D= 10 10 9 8 7 6 5 4 3 2 1 0
D= 11 10 9 8 7 6 5 4 3 2 1 0

DDIO+DDIO

Figure 7: Model of the LLC set (Xeon Platinum Silver 4208)

Finding #1 (rev.): Spatially limited LLC interaction.
Another portion of the LLC set is malleable by secondary
devices. This region (DDIO+) has associativity two.

6 Revisiting Cache Eviction

With magnet ways (#3), this section challenges the concept
of minimal eviction sets through efficient eviction with fewer
elements than the cache associativity (#1). First, as a stepping
stone of independent interest, we evict shared lines from a
victim’s private caches without directory contention. For sim-
plicity, we consider the default DDIO configuration (D = 2).

6.1 Eviction without Coherence Directory
Algorithm 3 evicts a shared line from remote victim caches
with the shared access method. First, the attacker prepares
the target in L2, and waits. If the victim accesses the target, it
resides in attacker and victim L2, and the LLC (cf. Figure 4d).
Second, the attacker evicts it from the LLC which, if it was
indeed there, invalidates the copies in all L1/L2 caches. Other-
wise, the target remains in the attacker’s L2. This invalidation
is not strictly required for non-inclusive LLCs, but happens in
practice [67]. LLC eviction (line 3) is implemented by access-
ing W lines with threads on different cores (Figure 4d).

Algorithm 3 Eviction without Coherence Directory (CD)

L2V L2A LLC L2V L2A LLC
T T

T T T T

T

On the right, the LLC and L2 states of victim (L2V) and attacker
(L2A) are shown for each operation on the target address (T).

1: att_CpuRead
2: vic_CpuRead ? 3 (access) 7 (no access)

3: att_CpuEvict_LLC
4: att_CpuTime RAM L2

Algorithm 3 can also be inverted, making it slightly more
complex (details in Appendix D). Surprisingly, the inverted
version can evict lines from L2 caches in remote sockets.

6.2 Reduced Eviction
Combined attackers can produce magnet ways, i.e., empty
ways to attract incoming lines (cf. Section 3.2.3). Assuming a
magnet way in the DDIO region, a combined attacker can evict
a target line from a victim cache by, first, triggering its LLC al-
location (where the magnet will attract it) and second, evicting
it from the DDIO region with only two congruent addresses.
Without magnet ways, the target may be installed anywhere
in the LLC set, and W addresses are needed to reliably evict it.
Algorithm 4 shows how to produce and exploit DDIO magnet
ways using a tiny eviction set of four addresses (0-3). Strictly
speaking, two congruent lines suffice. However, to make evic-
tion repeatable, we suffer from DDIO+ behavior and rely on
our model LLC structure to overcome it (cf. Section 5).

First, the secondary device writes lines 0-1, followed by
CPU writes. Afterwards, the secondary device writes them
again, while the CPU reads the target line. This terminates

Algorithm 4 Eviction with Reduced Eviction Set

L2 LLC
1 0

1 0 M M

M M1 0

T M M1 0

M T1 0 T M M1 0

3 21 0 T 3 21 0

3 2 T M M1 0 3 2 T M M1 0

T M M3 2 T M M3 2

On the right, the attacker’s L2 and LLC (with DDIO+ and DDIO) are
shown, with lines 0-3, LLC magnet ways (M), and target (T) .
Prepare:

1: att_SecWr (0,1)
2: att_CpuWr (0,1)
3: att_SecWr (0,1)
4: att_CpuRd (T)

Wait:
5: ? vic_CpuRd (T) 3 (access) 7 (no access)

Measure & Reinstate:
6: att_SecWr (2,3)
7: att_CpuTime (T) RAM L2
8: att_CpuWr (2,3)
9: att_SecWr (2,3)

Reiterate from line 5, swapping the roles of 0-1 and 2-3.

the preparation phase, with the target in the attacker’s L2, two
magnet ways in the DDIO region, and lines 0-1 in DDIO+.

Then, the attacker waits. If the victim accesses TARGET,
it moves to the LLC DDIO region, attracted by the magnet
ways. Afterwards, secondary writes to 2-3 evict the DDIO
region (0-1 cannot serve this purpose, as they are modified
and allocate to DDIO+ instead). A CPU timing measurement
of TARGET reveals it to reside either in L2 (no victim access)
or in RAM (victim access). Finally, 2-3 are written by the
CPU and the secondary device, recreating the magnet ways
in the DDIO region and placing 2-3 in DDIO+ instead of 0-1.
The next iteration can now start, and 0-1 swap roles with 2-3.

The reduced eviction can also be inverted, making it work
across CPU sockets on our platforms (cf. Appendix D).

7 Implementation

We work with the FPGA-accelerated cloud platforms of Sec-
tion 2.6 and implement a hardware (HW) module to demon-
strate our findings. This section explains its functionality.
Read-Write Primitives. As we work with Intel FPGAs, we
use Open Programmable Acceleration Engine (OPAE) to inte-
grate FPGA acceleration into software applications. OPAE di-
vides the FPGA’s programmable fabric into two parts; a blue-
bitstream pre-programmed by Intel, and a green-bitstream
that implements the user’s hardware accelerators. The blue-
bitstream acts as a bridge between accelerators and software,
and provides them with Direct Memory Access (DMA).

DMA and a timing source are essential components for
cache-timing experiments. With OPAE, a DMA operation
consists of two transactions; one for asserting memory read
and write requests, and another to monitor the completion of
this request. To measure latency, we create a counter-based
timing source on the FPGA, similar to Weissman et al. [62].

no stress stress -m 1 stress -m 8

E
xe

c.
Ti

m
e

(m
s)

Fa
il

R
at

e
(%

)

Stress # of Exec. Time Fail Rate
Level Verf. (ms) (%)

No
0 0.10 6.72
1 0.12 0.00
4 0.17 0.00

-m 1
0 0.09 69.27
1 0.12 11.99
4 0.17 3.00

-m 8
0 0.08 97.25
1 0.13 43.15
4 0.19 3.24

(a) Detailed evaluation for D = 2 (default)

3 4 5 6 7 8 9 10 11

3

6

9

12

2
0

0 Verification
1 Verification
4 Verifications

3 4 5 6 7 8 9 10 11

3

6

9

12

2
0

3 4 5 6 7 8 9 10 11

3

6

9

12

2
0

3 4 5 6 7 8 9 10 11

50

100

2
0

3 4 5 6 7 8 9 10 11

50

100

2
0

3 4 5 6 7 8 9 10 11

50

100

2
0

(b) The effect of D (on X axis) on the performance and accuracy.

Figure 8: Performance of HW-accelerated eviction set construction on our Xeon Silver setup (EV=W , avg. of 1000 runs).

It counts the cycles that expire between requests and replies
(at 400 MHz), allowing to distinguish the memory level that
serves the request (L2, LLC or RAM), as given in Appendix A.
The FPGA counter is not synchronized to the CPU counter.

The hardware design also features a set of software-
configurable registers to instruct the actions of the accelerator,
e.g., to perform a timed read or write at a given address. More
sophisticated instructions are described next.
Fast Eviction Set Finding. We extend the hardware mod-
ule with an advanced state machine that implements the fast
eviction-set finding algorithm introduced in Algorithm 1.

The algorithm is fully encapsulated in hardware and pro-
ceeds without additional interaction. Moreover, a few settings
are exposed to users. Essential settings are the target for which
to find the eviction set, the desired size, the number of veri-
fication repetitions, and the timing threshold (LLC vs. RAM
accesses). The delay between consecutive memory operations
can also be configured to ensure their in-order execution.
Access Sequences. The hardware module supports encapsu-
lating commonly used sequences of read and write operations
to reduce HW-SW interaction overhead, e.g., for fast reduced
eviction (cf. Section 6.2). Again, the configuration of these
sequences happens with software-accessible registers.

8 Evaluation and Discussion

This section evaluates three applications of our accelerator,
demonstrating: (1) the speed and accuracy of eviction set
construction, (2) a covert channel encoding information in the
number of evicted lines, and (3) reduced eviction in practice.

8.1 HW-Accelerated Eviction Set Finding
8.1.1 Performance

Figure 8 presents the performance and accuracy of hardware-
accelerated eviction set construction, measured on our local

Xeon Silver platform (8 slices, cf. Section 2.6). We consider
sets of size EV=W =11, and conduct the measurements on
both idle and noisy systems. For the latter, we use stress to
emulate moderate and high noise, resp. with -m 1 and 8.

We report end-to-end execution time, i.e., we do not ex-
clude any preparation steps or interactions with hardware. The
existence of even a single false positive in the set classifies
it as failed, even if the remainder of the set is correct. The
candidate verification (cf. Algorithm 2) significantly reduces
such false positives at the cost of slightly increased runtime.

Hardware-accelerated eviction set construction is very ef-
fective. On our local platform, the accelerator can find an
LLC/CD eviction set in around 120µs on idle systems, or
200µs under stress. For the default DDIO configuration, the
throughput of one accelerator (in EVS/s, eviction sets per sec-
ond) reaches more than 8000EVS/s for noise-free systems,
and around 5000EVS/s for very high noise. Such speeds
allow to map out the entire 11 MB LLC in ≈ 2s. For re-
duced eviction sets (EV=4), the average throughput is around
16kEVS/s. On the ACE platforms, the accelerator is roughly
3 times slower, since the slice count increases from 8 to 28.

Influence of D. For non-default DDIO configurations (i.e.,
D> 2), the performance of eviction set construction decreases
with D. As D grows, the associativity perceived by the ac-
celerator increases (#1), which increases the relative weight
of the Discover phase. Especially for high noise pressure,
this impacts the performance for two main reasons (cf. Sec-
tion 4.2.3). First, during discovery, more guesses are required
to detect a congruence, as detection may only occur for every
D−1 congruent guesses. Second, false positives have adverse
effects, as all DISCOVER_FOUND are discarded upon a failed
verification test, in contrast to just a single discarded address
during Expand. All in all, our eviction set construction is still
accurate and faster than related work. Moreover, D = 2 is the
default configuration. To our knowledge, no benchmarking
tools exist to help users decide when to change it.

8.1.2 Comparison

Expansion-based Methods. As covered in Section 4.2,
expansion-based methods work well when the congruence test
is non-disturbing. To our knowledge, the only other expansion-
based method2 is our work on PRIME+SCOPE [47], which
obtains a repeatable congruence test by exploiting the proper-
ties of lines that are cached in multiple levels simultaneously.

Although the algorithm based on PRIME+SCOPE bears
a similar structure to Algorithm 1, it differs in several im-
portant aspects. First, it is concerned with a different threat
model. Second, the non-destructive measurement relies on
fundamentally different properties. Third, the PRIME+SCOPE
version for non-inclusive Intel LLCs needs to orchestrate two
attacker threads on different cores to allocate in the LLC (cf.
Figure 4d). Finally, CPU-based attackers perceive the full
LLC associativity, in contrast to the accelerator (e.g., D=2).
Reduction-based Methods. For reference, we also compare
the accelerator to reduction-based methods. Yan et al. [66]
proposed the state-of-the-art reduction algorithm for non-
inclusive caches. As their code is not available, we are un-
able to fairly compare to them. Moreover, their work may be
amenable to similar optimizations as those shown for inclu-
sive caches [60]. To have a meaningful data point for compar-
ison, we compare with the highly optimized implementations
for inclusive caches by Vila et al. [60]. Arguably, this serves
as an upper bound for performance in non-inclusive caches,
because of the obstacles identified in prior work [66]. On the
other hand, our accelerator is agnostic to LLC inclusion, so we
expect it to apply to inclusive LLCs with similar performance.
Results. Like the accelerator, we measure the performance
of the PRIME+SCOPE [47] code on the local Xeon Silver
platform. For the Vila et al. [60] code, we match their CPU and
configuration. Importantly, the number of slices is the same
for both platforms under consideration (cf. Section 4.2.3).

As Table 6 shows, our HW accelerator achieves good end-
to-end performance. Compared to the algorithm based on
PRIME+SCOPE (P+S), it is another order of magnitude faster.
Depending on the noise level, it is between two and three
orders of magnitude faster than reduction-based methods, at
the cost of a small decrease in accuracy.

Note, however, that the threat model for the hardware accel-
erator is different. It assumes a secondary device but no code
execution, whereas CPU-only methods assume code execu-
tion (native or otherwise [40, 60]) but no secondary device.

8.1.3 Robustness, Simplicity and Stealth

Robustness. The accelerator maintains good performance
for high noise (cf. Figure 8), with several contributing factors.
The timing source is a noise-free HW counter, and interfer-
ence with other processes is limited to the DDIO region. The

2One exception is PRIME+PRUNE+PROBE [46], which applies to a new
class of randomized protected caches that are not in use today.

Table 6: End-to-end performance (1000 runs) of our accelera-
tor compared to PRIME+SCOPE [47] on our local setup, and
optimized reduction-based algorithms [60].

Impl. CPU & Stress Error Rate Exec. Time
Cache Level (%) (msec)

Ours∗ Skylake-SP
Xeon Slv. 4208

11-way LLC
Non-Inclusive

no 0.0 0.17
-m 1 0.5 0.17
-m 8 3.5 0.17

P+S
[47]

no 0.0 1.11
-m 1 0.0 1.24
-m 8 0.3 3.56

[60]†
Skylake

Core i5-6500
12-way LLC

Inclusive

no 0.0 19
-m 1 0.0 35
-m 3 0.0 206

∗ for the default DDIO configuration with D = 2.
† with initial set size 120, while other works do not use an initial set.

algorithm itself is also robust. False-negative errors only in-
crease the execution time, and most false-positive errors are
detected by Algorithm 2. Provided that the Discover phase is
successful, remaining false positives do not affect the other ad-
dresses in the Expand phase, as every address is individually
tested for congruence. In contrast, reduction algorithms may
have to implement backtracking [60] to avoid getting stuck,
as false positives trigger the removal of congruent addresses.
Simplicity. Fully described by a few lines of pseudocode, the
accelerator is simple to understand. It does not use hierarchy-
specific techniques, e.g., directory contention or helper evic-
tion sets [66]. The accelerator interacts with a D-way set-
associative view of the LLC which, at least for small D, is a
great simplification. Furthermore, it is oblivious to associa-
tivity, replacement policy and noise in low-level caches. The
same FPGA bitstream is used on all our test platforms.
Stealth. Due to its speed, eviction set construction is hard to
detect at runtime. Moreover, the timing source is implemented
on the FPGA fabric, so accesses to it are invisible to the CPU
or blue-bitstream. Finally, it is essentially a state machine,
requesting read and write operations to the blue-bitstream
and timing them. Its resource utilization is very low, making
it a hard-to-notice attachment. Appendix F covers detailed
utilization numbers for the accelerator, showing that it barely
increases compared to Intel’s Hello World baseline.

8.2 Amplitude-Based Covert Channel

We implement a covert channel between combined attackers,
demonstrating the precise control over the cache hierarchy
with only a few congruent addresses. It transfers information
by manipulating DDIO (D= 2) and DDIO+ ways simultane-
ously and independently. Moreover, due to non-perturbing
reads (#2), it reliably encodes amplitude information in the

Table 7: Covert channel with prime (PR), transmit (TX) and
probe (PB). Symbols are always transferred over DDIO, and
optionally over DDIO+ (optional operations underlined). Par-
ties use their own eviction sets, resp. A,B,· · · and 1,2,· · ·

PR: Receiver puts A,B
into DDIO, and C,D into
DDIO+.

TX: Sender may replace
A,B,C,D with 1,2,3,4.

PB: Receiver checks if
A,B are still in DDIO,
and C,D in DDIO+.

Receiver Sender

PR
CpuWr(C,D) CpuWr(3,4)
SecWr(C,D)
SecWr(A,B)

TX
SecWr(3/4)
SecWr(1/2)

PB
SecTime(C,D)
SecTime(A,B)

signal (i.e., the number of evicted ways), which performs
poorly for traditional attackers due to self-eviction [37]. It
does not use shared memory; the parties use their own eviction
sets (agreed upon in advance, e.g., using HW-acceleration).

Table 7 shows two versions; one over the DDIO region,
and one that combines DDIO/DDIO+ regions. Both consist of
three stages. First, the receiver primes (PR) the DDIO lines (if
applicable also in DDIO+). Second, the sender transmits (TX)
a symbol by overwriting zero, one or two of the receiver’s
DDIO (and DDIO+) lines. Third, the receiver probes (PB) its
lines to determine how many have been evicted.

The DDIO channel encodes a ternary symbol, i.e., log2 3=
1.58-bits per cache set. For transferring 512 packets of 256
symbols, we achieve 264 Kbps bandwidth (BW) with 2.26 %
Symbol Error Rate (SER). The DDIO/DDIO+ channel encodes
two ternary symbols, i.e., log2(3 ·3) = 3.17 bits per cache
set. In this case, the BW is slightly lower at 211 Kbps with
2.20 %SER, because of extra interfacing with hardware.

Comparison. We use a shared timestamp counter to synchro-
nize transmitter and receiver, as well as a known preamble.
Our implementation is open to optimizations, e.g., common
engineering practices like synchronization or error correction,
or transmission over multiple sets.

Although the covert channel only serves to illustrate the
fine-grained spatial capabilities of combined attackers, we
briefly compare it with closely related implementations.
Weissman et al. [62] build a covert channel from FPGA to
CPU. It achieves 95 Kbps and, like ours, can be improved. Yan
et al. [66] establish a cross-core channel using CD contention
on a non-inclusive LLC, and achieve 0.2 Mbps. To our knowl-
edge, the fastest cross-core covert channels with unshared
memory achieve 2–4 Mbps [42, 45, 47]. Ours is an order of
magnitude slower, mostly because of hardware interfacing
overhead, but is open to improvements.

Table 8: Eviction patterns for shared lines, their eviction set
size, eviction rate, number of accesses and attacker model

Pattern EV Ev. Rate Accesses VCC VCS A

CD-11-9 [66] 11 ≈ 25% 216 3 ASTD

CD-13-9 [66] 13 ≈ 95% 234 3 ASTD

CD-14-9 [66] 14 ≈100% 252 3 ASTD

L2-16-9/LLC-11 [66] 16+11 ≈100% 144+22 3 ASTD

No CD (Alg. 3) 11 ≈100% 22 3 3 ASTD

Reduced (Alg. 4) 4 ≈100% 6 3 3 ACMB

8.3 Reduced Eviction

Eviction Rate. Table 8 compares the eviction rates of our
new patterns with those reported by Yan et al. [66] for shared
lines. For all patterns, the goal is to evict a shared line, cur-
rently in another core’s L2, from the hierarchy. We achieve a
near-perfect eviction rate, with fewer accesses and the bonus
of working across sockets (cf. Appendix D). Our CD-less evic-
tion (Algorithm 3) implements LLC eviction with two threads
each writing EV=11 addresses once, generating direct LLC
contention. The reduced eviction implements Algorithm 4.

Yan et al. observe that using unshared lines to evict shared
lines from remote L2 caches through the CD has unsatisfactory
results. To overcome this, they use shared lines, instantiating
two threads that repeatedly access a CD eviction set; e.g.,
two threads iterating 9 times over a set of size EV=13 (CD-
13-9 in Table 8) yield an eviction rate of ≈ 95% and 234
accesses. They also propose a pattern with contention on L2
(EV=16) and CD (EV=11) simultaneously, and attribute its
success to bypassing the CD replacement policy. Our work
suggests that the underlying mechanism is actually an instance
of Algorithm 3; replacing shared access (Figure 4d) with L2
contention (Figure 4a) to transfer the line to LLC. Hence, what
appeared to be CD contention is actually LLC contention.
End-to-end Example: AES. We demonstrate the feasibility
of reduced and cross-socket eviction with the OpenSSL 1.0.1e
AES T-Tables implementation, a now-standard target for side-
channel research. We do not claim algorithmic improvements
and simply refer to the illustrative synchronous first-round
attack [41, 56] to show the feasibility of our techniques (cf.
Appendix E for attack details). In short, the attacker evicts the
cache lines containing the T-Tables, triggers encryptions with
known plaintext bytes, and monitors access patterns to the
tables. Through statistical differences between table accesses,
the attacker learns the upper half of every secret key byte.

We use the hardware accelerator to construct eviction sets
and assume the victim binary to reside in small read-only
pages. To showcase reduced eviction, we early-abort the ac-
celerator for EV=4. To overcome the writing limitation, we
construct the eviction sets indirectly for addresses with the
same small page offset, and then test whether they contend
with the tables in the LLC/CD. This test can work with sev-
eral mechanisms (cf. Figure 4). We select Algorithm 4 for its

speed and reliability. To construct all necessary sets on the
Xeon Platinum 8180 (ACE1, 28 slices), we observe a median
runtime of 194 ms and perfect accuracy over 100 runs.
Limitations. For reduced eviction, if both magnet ways are
occupied before TARGET is installed, e.g., due to noise, the
target ends up outside of the DDIO region. Though this rarely
happens on our setup, normal behavior can be reinstated by
evicting the full set once. For cross-socket reduced eviction,
the target can become stuck in the victim socket if the victim
reads it while still in the attacker socket’s LLC.
Results. In the absence of noise, reduced eviction consis-
tently reveals the subkeys within 300 traces, both in same- and
cross-socket attacks (cf. Appendix E). However, robustness
in the latter case is significantly lower, and we recommend
using an eviction set with full associativity (cf. Algorithm 5).

9 Related Work

9.1 Cache-based Side Channel Attacks

Table 9: Non-inclusive Cache Attacks (Shared Memory)

Contribution Flushless Cross-Socket Single-Thread Reduced Eviction

Lipp [30] 3 7 3 7
Irazoqui [22] 7 3 3 7

Yan (F+R) [66] 7 7 3 7
Yan (E+R) [66] 3 7 7 7

Ours (ASTD) 3 3 3 7
Ours (ACMB) 3 3 7 3

Non-inclusive Cache Attacks. Lipp et al. [30] mount
FLUSH+RELOAD and EVICT+RELOAD on small non-
inclusive ARM caches. Irazoqui et al. [22] illustrate that
FLUSH+RELOAD applies to all caches in the same coher-
ence domain, even across sockets. These attacks bypass non-
inclusive LLCs by relying on self-eviction [30], or using
clflush [22]. Yan et al. [66], in contrast, propose a multi-
threaded EVICT+RELOAD to reliably evict the shared target
(cf. Section 8.3). We show an EVICT+RELOAD without CD
manipulation (ASTD), and one with four addresses (ACMB), re-
futing that eviction sets must cover the full cache associativity.
Table 9 positions our work within this subset of related work.

In the absence of shared memory, the attacker can mount
PRIME+PROBE [66] or PRIME+SCOPE [47] on the coherence
directory, leveraging our eviction set construction.
Cross-CPU. Yao et al. [68, 69] present a flushless cross-
socket covert channel based on non-uniform memory access
and cache coherence. They rely on a cooperating transmit-
ter to evict the target (i.e., covert channel). Our cross-socket
channel does not have this requirement, showing that shared
memory is a security risk even when clflush is disabled and
the victim is the only tenant on a CPU socket. A noteworthy
non-cache cross-socket side-channel attack is DRAMA [45].

Secondary devices. Frigo et al. [11] accelerate microarchi-
tectural attacks with the GPU, which is also connected to the
cache hierarchy (though differently than DDIO devices). Their
focus is Rowhammer-based fault injection [24, 39, 53, 58].

Weissman et al. [62] instantiate the secondary device as an
FPGA. They leverage non-destructive reads (#2) to accelerate
Rowhammer, and study cache attacks from CPU to FPGA and
vice-versa. However, the statically constrained DDIO region
provides challenges for FPGA-based attacks.

Kurth et al. [27] also construct eviction sets with a sec-
ondary device, i.e., a NIC. Their network-based threat model
faces more challenges: it takes about five minutes to produce
64 eviction sets over the network. However, since properties
#1 and #2 hold, our eviction set algorithm may accelerate it.

Taram et al. [55] describe a CPU process that infers network
memory access patterns by the NIC (based on DDIO).

9.2 Countermeasures
Constant-time programming successfully thwarts the com-
bined attacker explored in this paper, as it removes vulnerable
code patterns. It is now common practice to harden crypto-
graphic implementations, and several techniques have been
proposed, e.g., [1, 8, 28, 49, 64]. However, access patterns
can reveal other secrets, such as user input [13, 50], browsing
behavior [40,54], or model parameters [65]. Additionally, cap-
turing all side-channel leaks remains difficult in practice [51].

Hardware-based countermeasures have attracted attention
in recent years, and are generally based on, e.g., partitioning
the cache [7, 32], randomizing the address-to-index mapping
[48, 61, 63], or approximating fully associative caches [6, 52].
For non-inclusive cache hierarchies, SECDIR [67] hardens the
coherence directory explicitly. However, existing hardware-
based proposals non-trivially interact with DDIO/DDIO+ re-
gions. Additionally, such countermeasures must make explicit
all potential transfers between cache levels, as undocumented
transfers (cf. Section 6.1) might endanger their security.

Runtime detection using on-die counters [4, 5, 71] could
be generalized to combined attackers. It should be investi-
gated whether they sufficiently capture accelerator activity.
For FPGAs, they can be embedded in the blue bitstream.

Some works propose limiting access to high-resolution
timers [35,59]. Such countermeasures do not generally thwart
combined attacks, as they can bring their own timing source.

Invalidating the findings of Section 3.2 counteracts the
results in this work. The accelerator would suffer if writes oc-
cupy the full set (#1), or reads alter LLC state (#2). However,
the performance implications are significant, and increasing
DDIO access to the cache improves attacks from accelerators
alone [27, 62]. The precise manipulation of the cache hierar-
chy (#3) seems to be fundamental to DDIO and is non-trivial to
disable. An exception is the unexpected cross-socket transfer
(cf. Section 6.1). This transaction is not essential to maintain
coherence. We believe it to be a performance heuristic.

10 Conclusion

Heterogeneous multi-tenancy is a dangerous trend, providing
attackers with ever-more expressive primitives to manipulate
shared microarchitectural state. This work exposed undoc-
umented behavior in non-inclusive Intel caches and DDIO.
Leveraging these insights, we developed a proof-of-concept
FPGA hardware accelerator to shatter speed records for evic-
tion set construction, build covert channels with multi-bit
symbols, and evict lines from the cache with tiny sets.

Acknowledgments

We thank the anonymous USENIX Security reviewers for
their insightful feedback. This research is partially funded
by the European Research Council (ERC #695305) and the
Flemish Government (FWO project TRAPS). It is also sup-
ported by CyberSecurity Research Flanders (#VR20192203)
and a generous gift from Intel. Antoon Purnal is supported by
a grant of the Research Foundation - Flanders (FWO).

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-

pressoir, and Michael Emmi. Verifying Constant-time Implementations.
In USENIX Security Symposium, 2016.

[2] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing Memory
Density by using KSM. In Proceedings of the Linux Symposium, 2009.

[3] Daniel J Bernstein. Cache-timing attacks on AES, 2005.

[4] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisen-
barth. Cacheshield: Detecting Cache Attacks Through Self-observation.
In ACM Conference on Data and Application Security and Privacy
(CODASPY), 2018.

[5] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam
Waksman, Simha Sethumadhavan, and Salvatore Stolfo. On the Feasi-
bility of Online Malware Detection with Performance Counters. ACM
SIGARCH Computer Architecture News, 2013.

[6] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hyb-
Cache: Hybrid Side-Channel-Resilient Caches for Trusted Execution
Environments. In USENIX Security Symposium, 2020.

[7] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Non-Monopolizable Caches: Low-Complexity
Mitigation of Cache Side Channel Attacks. ACM Transactions on
Architecture and Code Optimization (TACO), 2012.

[8] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
CacheAudit: A Tool for the Static Analysis of Cache Side Channels.
In USENIX Security Symposium, 2013.

[9] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić.
Make the Most Out of Last Level Cache in Intel Processors. In EuroSys
Conference, 2019.

[10] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić.
Reexamining Direct Cache Access to Optimize I/O Intensive Applica-
tions for Multi-hundred-gigabit Networks. In USENIX Annual Techni-
cal Conference (ATC), 2020.

[11] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating microarchitectural attacks with the
GPU. In IEEE Symposium on Security and Privacy (S&P), 2018.

[12] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

[13] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-level Caches. In
USENIX Security Symposium, 2015.

[14] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games–
Bringing Access-based Cache Attacks on AES to Practice. In IEEE
Symposium on Security and Privacy (S&P), 2011.

[15] Ram Huggahalli, Ravi R. Iyer, and Scott Tetrick. Direct Cache Access
for High Bandwidth Network I/O. In 32st International Symposium on
Computer Architecture (ISCA), 2005. doi:10.1109/ISCA.2005.23.

[16] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In IEEE Symposium on
Security and Privacy (S&P), 2013.

[17] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache Attacks Enable Bulk Key Recovery
on the Cloud. In Cryptographic Hardware and Embedded Systems
(CHES), 2016.

[18] Intel. Intel Data Direct I/O Technology
Overview. https://www.intel.co.jp/content/
dam/www/public/us/en/documents/white-papers/
data-direct-i-o-technology-overview-paper.pdf, 2012.

[19] Intel. Intel CAT: Improving Real-Time Performance by Uti-
lizing Cache Allocation Technology. https://software.
intel.com/content/www/us/en/develop/articles/
introduction-to-cache-allocation-technology.html, 2015.

[20] Intel. Open Programmable Acceleration Engine: Libraries.
https://github.com/OPAE/opae-libs/blob/master/include/
opae/buffer.h#L28, 2021.

[21] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared
Cache Attack That Works Across Cores and Defies VM Sandboxing
– and Its Application to AES. In IEEE Symposium on Security and
Privacy (S&P), 2015.

[22] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor
Cache Attacks. In ACM SIGSAC Asia Conference on Computer and
Communications Security (AsiaCCS), 2016.

[23] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel Ad-
dress Space Layout Randomization with Intel TSX. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016.

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping Bits in Memory Without Accessing Them: An Experimental Study
of DRAM Disturbance Errors. ACM SIGARCH Computer Architecture
News, 2014.

[25] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In IEEE Symposium on Security and
Privacy (S&P), 2019.

[26] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology - CRYPTO,
1996.

[27] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Her-
bert Bos, and Kaveh Razavi. NetCAT: Practical Cache Attacks From
the Network. In IEEE Symposium on Security and Privacy (S&P),
2020.

[28] Adam Langley. ctgrind—checking that functions are constant time
with Valgrind, 2010. URL https://github.com/agl/ctgrind, 2010.

https://doi.org/10.1109/ISCA.2005.23
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://github.com/OPAE/opae-libs/blob/master/include/opae/buffer.h#L28
https://github.com/OPAE/opae-libs/blob/master/include/opae/buffer.h#L28

[29] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia,
Michael Kaminsky, David G Andersen, O Seongil, Sukhan Lee, and
Pradeep Dubey. Architecting to Achieve a Billion Requests per Second
Throughput on a Single Key-value Store Server Platform. In Interna-
tional Symposium on Computer Architecture (ISCA), 2015.

[30] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices.
In USENIX Security Symposium, 2016.

[31] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security Symposium, 2018.

[32] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Ger-
not Heiser, and Ruby B Lee. Catalyst: Defeating Last-level Cache Side
Channel Attacks in Cloud Computing. In IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2016.

[33] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-Level Cache Side-Channel Attacks Are Practical. In IEEE Sym-
posium on Security and Privacy (S&P), 2015.

[34] Ilias Marinos, Robert NM Watson, and Mark Handley. Network Stack
Specialization For Performance. ACM SIGCOMM Computer Commu-
nication Review, 2014.

[35] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms
to Mitigate Side-channel Attacks. In International Symposium on
Computer Architecture (ISCA), 2012.

[36] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Last-Level Cache Complex Addressing Using Performance Counters.
In Research in Attacks, Intrusions, and Defenses (RAID), 2015.

[37] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the Other Side: SSH over Robust Cache Covert Channels
in the Cloud. In Network and Distributed System Security Symposium
(NDSS), 2017.

[38] David Mulnix. Intel® Xeon® Processor Scalable Family Techni-
cal Overview. http://web.archive.org/web/20080207010024/
http://www.808multimedia.com/winnt/kernel.htm, 2017. Ac-
cessed: 2020-08-13.

[39] Onur Mutlu. The RowHammer Problem and Other Issues we may Face
as Memory Becomes Denser. In Design, Automation & Test in Europe
(DATE), 2017.

[40] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The Spy in the Sandbox: Practical Cache Attacks
in JavaScript and Their Implications. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2015.

[41] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: The Case of AES. In Cryptographers’ Track at the
RSA Conference on Topics in Cryptology (CT-RSA), 2006.

[42] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. Lord
of the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Inter-
connect Are Practical. In USENIX Security Symposium, 2021.

[43] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. IACR Cryptol. ePrint Arch. 2002/169, 2002.

[44] Colin Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.

[45] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: Exploiting DRAM Addressing for Cross-
cpu Attacks. In USENIX Security Symposium, 2016.

[46] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede.
Systematic Analysis of Randomization-based Protected Cache Archi-
tectures. In IEEE Symposium on Security and Privacy (S&P), 2021.

[47] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention
Attacks. In ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2021.

[48] Moinuddin K. Qureshi. CEASER: Mitigating Conflict-based Cache
Attacks via Encrypted-address and Remapping. In IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2018.

[49] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my
code constant time? In Design, Automation & Test in Europe (DATE),
2017.

[50] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-
age. Hey, You, Get off of My Cloud: Exploring Information Leakage
in Third-party Compute Clouds. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2009.

[51] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 Lives of Bleichenbacher’s CAT: New Cache
ATtacks on TLS Implementations. In IEEE Symposium on Security
and Privacy (S&P), 2019.

[52] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE: Mitigating
Conflict-Based Cache Attacks with a Practical Fully-Associative De-
sign. In USENIX Security Symposium, 2021.

[53] Mark Seaborn and Thomas Dullien. Exploiting the DRAM Rowham-
mer Bug to Gain Kernel Privileges. Black Hat, 2015.

[54] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust Website Finger-
printing Through the Cache Occupancy Channel. In USENIX Security
Symposium, 2019.

[55] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Packet
Chasing: Spying on Network Packets over a Cache Side-channel. In
International Symposium on Computer Architecture (ISCA), 2020.

[56] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks
on AES, and Countermeasures. Journal of Cryptology, 2010.

[57] Furkan Turan and Ingrid Verbauwhede. Trust in FPGA-Accelerated
Cloud Computing. ACM Computing Surveys, 2020.

[58] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowhammer
attacks on mobile platforms. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

[59] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating
Fine Grained Timers in Xen. In ACM Workshop on Cloud Computing
Security (CCSW), 2011.

[60] Pepe Vila, Boris Köpf, and José F. Morales. Theory and Practice of
Finding Eviction Sets. In IEEE Symposium on Security and Privacy
(S&P), 2019.

[61] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwart-
ing Software Cache-based Side Channel Attacks. In International
Symposium on Computer Architecture (ISCA), 2007.

[62] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio,
Thomas Eisenbarth, and Berk Sunar. JackHammer: Efficient Rowham-
mer on Heterogeneous FPGA-CPU Platforms. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020.

[63] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. SCATTERCACHE: Thwarting
Cache Attacks via Cache Set Randomization. In USENIX Security
Symposium, 2019.

[64] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. MicroWalk: A Framework for Finding Side Channels in Bina-
ries. In Annual Computer Security Applications Conference (ACSAC),
2018.

http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm

[65] Mengjia Yan, Christopher Fletcher, and Josep Torrellas. Cache Telepa-
thy: Leveraging Shared Resource Attacks to Learn DNN Architectures.
In USENIX Security Symposium, 2020.

[66] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy H. Campbell, and Josep Torrellas. Attack Directories,
Not Caches: Side Channel Attacks in a Non-Inclusive World. In IEEE
Symposium on Security and Privacy (S&P), 2019.

[67] Mengjia Yan, Jen-Yang Wen, Christopher W Fletcher, and Josep Torrel-
las. SecDir: a secure directory to defeat directory side-channel attacks.
In International Symposium on Computer Architecture (ISCA), 2019.

[68] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are Coherence
Protocol States Vulnerable to Information Leakage? In IEEE Sympo-
sium on High Performance Computer Architecture (HPCA), 2018.

[69] Fan Yao, Guru Venkataramani, and Miloš Doroslovački. Covert timing
channels exploiting non-uniform memory access based architectures.
In Proceedings of the on Great Lakes Symposium on VLSI, 2017.

[70] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-channel Attack. In USENIX Security
Symposium, 2014.

[71] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Cloudradar: A Real-
time Side-channel Attack Detection System in Clouds. In Research in
Attacks, Intrusions, and Defenses (RAID), 2016.

[72] Li Zhao, Ravi R. Iyer, Srihari Makineni, Don Newell, and Liqun Cheng.
NCID: a Non-inclusive cache, Inclusive Directory Architecture for
Flexible and Efficient Cache Hierarchies. In Conference on Computing
Frontiers, 2010.

Appendix
A Access Time

The access times of various memory access operations are
given in Figure 9 (for 1000 measurements). As the bins show,
the access times easily allow distinguishing the operations.
In the case of secondary device reads from L2 and LLC, the
histograms do show a small overlap. However, during the
experiments, we rarely need to determine L2 accesses, but
often need to differentiate LLC and RAM accesses.

B Cache Manipulation Details

This section provides more insight into the migration between
different cache levels in the non-inclusive hierarchies of our
test platforms (cf. Section 2.6). We also relate this to state-
ments and observations of related work. Please refer to our
repository for supporting experiments.

When a line in memory is referenced by one of the cores, it
is installed in the L2 of that core, and tracked in the inclusive
coherence directory (CD) [66]. If the line is then referenced
by another core (cf. Figure 4d), it is installed in that core’s L2
as well. In addition, we observe that the line now has a copy
in the LLC, likely as a performance optimization. We find this
to happen immediately, i.e., already after one shared access,
in contrast to earlier studies that state it to happen only after
several accesses by processes on both cores [66], or not at
all [67]. Note that this does not contradict the non-inclusive

invariant of the LLC; lines in L2 may reside in the LLC si-
multaneously, but do not have to as they would in inclusive
hierarchies. Lines for which there is a copy in the LLC are no
longer tracked by the CD, i.e., their tag migrates to the LLC
along with the data. Thus, contention on the CD (Figure 4b)
no longer evicts such lines, as they no longer have a CD entry.

On Skylake-X, Yan et al. [66] find the associativity of the
structure that carries shared lines to be 11, matching with our
hypothesis that shared lines move to the LLC (W =11).

Our experiments confirm earlier statements [66, 67] that
lines evicted from the LLC are evicted from everywhere, i.e.,
they do not move back to L2 (with corresponding tracking in
CD), although it would be theoretically possible.

In summary, lines only in L2 caches are not evicted by LLC
contention as they do not have an entry there, in contrast to
inclusive LLCs. However, they can be moved to the LLC with
CD contention ([66], Figure 4b) or, as we discover, with a
shared access (Figure 4d) or writes by the secondary device
(Figure 4e). In contrast, lines with at least one copy in the
LLC are not evicted by CD contention, but can be evicted from
the entire hierarchy with contention on the LLC.
Clarifying Attacks. For lines that are only present in the
LLC, e.g., after L2 contention (Figure 4a) or CD contention
(Figure 4b), what happens when they are referenced again by
a CPU core? We observe that unshared lines move back to L2
(and become tracked in CD), and that shared lines remain in
the LLC and are copied to L2 (still tracked in LLC).

The behavior for shared lines is essential to understand
EVICT+RELOAD (both ours and [66]). The fact that shared
lines remain to have an LLC copy is the reason why our
EVICT+RELOAD attacks need to evict the shared line from
the entire cache hierarchy. If we would only move it from
L2 to LLC, later accesses by the victim core would not be
observable. The line will be served to the attacker from the
faster LLC, regardless of a victim access.

The behavior for unshared lines is essential to understand
PRIME+PROBE [66]. When an unshared line is read from
LLC, it is moved to L2, tracking it in the CD again (and hence,
evicting another entry from there). Although this transfer of
tracking from LLC to CD was not mentioned explicitly in [66],
we believe it to be consistent with (and necessary for) their
PRIME+PROBE attack, where unshared lines migrate back
and forth between the LLC and the CD.

C Replacement Policy

Table 10 covers access patterns using three congruent lines {A,
B, C} and compares the observed (2-way associative) DDIO
region contents against the ones expected with various re-
placement policies, e.g., LRU, variants of Quad-Age LRU,
and RRIP. To reset the replacement policy, we first fill the re-
gion of interest with congruent lines {D, E, F} and flush them.
The patterns are placed to the DDIO region with secondary
writes, where every measurement is repeated 1000 times.

Figure 9: A histogram showing the timing of indicated memory operations.

Table 10: Replacement Policy Experiment (DDIO). Discrep-
ancies between expected and observed states are indicated.

Access Cache Expected Contents with

Patterns Cont. LRU RRIP QUAD Variants

CBBAC BC AC CB AC AC CA
CBBBA AB AB AB AB AB BA
CBBCA AC CA CA CA CA BA
CBCAA AC CA CA CA CA AC
CBCAB AB BA CB CB BA AB

To our knowledge, the replacement policy for non-inclusive
Skylake and Cascade Lake CPUs has not been reverse-
engineered. Though we do not reverse-engineer the replace-
ment policy in this work, the knowledge that the replacement
policy is not plain LRU is already useful for our experiments.

We conducted similar tests for DDIO+ lines, and observed
an LRU-like policy. However, an exact reverse engineering of
that policy is complicated, as consecutive DDIO+ writes move
a line from LLC to L2, and then back to LLC, where it may be
considered to be a new address, instead of a cache hit. We
leave it as future work.

D Revisiting Eviction (Inverse Variant)

Algorithm 5 Eviction without CD - Inverse

L2V L2A LLC L2V L2A LLC

T

T T T T

T T T T T

On the right, the LLC and L2 states of victim (L2V) and attacker
(L2A) are shown for each operation on the target address (T).

1: ? vic_CpuRd 3 7

2: att_CpuTime Remote L2 RAM

3: hlp_CpuRead
4: att_CpuEvict_LLC

Algorithm 5 exposes the inverse version of Algorithm 3. The
helper process (hlp) is running on another core as the main

Algorithm 6 Eviction with Reduced Eviction Set - Inverse

L2 LLC
1 0

1 0 M M

M M1 0

M T1 0 T M M1 0

M T1 0 M T1 0

3 21 0 3 21 0

3 2 M M1 0 3 2 M M1 0

M M3 2 M M3 2

On the right, the attacker’s L2 and LLC (with DDIO+ and DDIO) are
shown, with lines 0-3, LLC magnet ways (M), and target (T) .
Prepare:

1: att_SecWr (0,1)
2: att_CpuWr (0,1)
3: att_SecWr (0,1)

Wait:
4: ? vic_CpuRd (T) 3 7

Measure & Reinstate:
5: att_CpuTime (T) Remote L2 RAM

6: hlp_CpuRd (T)
7: att_SecWr (2,3)
8: att_CpuWr (2,3)
9: att_SecWr (2,3)

Reiterate from line 4, swapping the roles of 0-1 and 2-3.

attacker process. It is added to ensure that the line moves to
LLC even if the victim does not access it, in order to remove it
from the cache hierarchy. Similarly, Algorithm 6 is the inverse
version of Algorithm 4. Both inverse algorithms are slightly
more complex, but seem to work across CPU sockets.

E AES T-Tables

To speed up the computation of the AES-128 block cipher,
table-based implementations consolidate a large part of the
round function into precomputed tables. The secret key k and
(known) plaintext p consist of 16 bytes (resp, ki and pi, for
0≤ i < 16). In every round, four tables are referenced, and for
the majority of the encryption rounds, these are tables Te0−3.

The proof-of-concept implements the first-round attack by
Osvik et al. [41], monitoring accesses to the first cache line
of tables Te0−3 for known plaintexts. The cache line corre-
sponding to Te j[pi⊕ ki] is always accessed in the first round,
where j = i mod 4. All other lines in Te j are often accessed,
yielding a statistical difference between the cache line cor-
responding to pi ⊕ ki, and the other lines of the table. By

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

Byte Index i

K
ey

N
ib

bl
e

G
ue

ss

0.9

0.92

0.94

0.96

0.98

1

(a) Cross-Core (VCC)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

Byte Index i

K
ey

N
ib

bl
e

G
ue

ss

0.9

0.92

0.94

0.96

0.98

1

(b) Cross-Socket (VCS)

Figure 10: Reduced eviction (EV = 4) pattern for AES T-tables on the ACE1 platform (cf. Section 2.6). Upper key nibbles
(0x31415926deadbeef) can be read from the columns (full key used: 0x3010401050902060d0e0a0d0b0e0e0f0)

Table 11: The FPGA Resource Utilisation of Our Accelerator

Design PAC Type ALMs (%) REGs RAM

Ours A10 31,993 (7%) 46,382 119
Hello FPGA A10 30,759 (7%) 42,398 101

Ours S10 53,497 (6%) 67,266 157
Hello FPGA S10 53,095 (6%) 63,323 139

identifying the plaintext byte pi for which the first cache line
of Te(i mod 4) is accessed always, the attacker learns the upper
log2(

256
CLsize) bits of ki. On modern platforms, with cache lines

of CLsize=64 bytes, this amounts to the upper four bits (i.e.,
half-byte or nibble) of ki. To learn which pi leads to the first
line always being accessed, the attacker submits plaintexts
with fixed pi and all other bytes random. This can be repeated
for all 16 key bytes ki (always fixing plaintext byte pi).

Figure 10 visually shows the described attack on AES
T-Tables using reduced eviction sets (EV=4), resp. for the
cross-core and cross-socket reduced eviction. For each com-
bination (byte index i, key nibble hypothesis), the example
performs 300 encryptions. The columns clearly reveal the
upper nibble of every key byte. For the cross-core setting, 300
encryptions per combination are sufficient to recover the full
key in all of 100 runs. For the cross-socket setting, the same
amount of successful encryptions is also sufficient, but the

target line may get stuck in the other socket (cf. Section 8.3).
This happens once per 12750 encryptions (average over 10
million encryptions). When it does, it can be detected, and
our proof-of-concept flushes the line from the cache. Hence,
in practice, an attacker may prefer to use full eviction in the
cross-socket case to increase the robustness against this event.

Many works have extended the original first-round attack to
full key recovery, as well as significantly reducing the number
of required encryptions. Such optimizations, while useful, are
out of scope for this attack example.

F FPGA Utilisation

Table 11 shows the resource utilization of our FPGA hard-
ware accelerator on two different Intel Programmable Accel-
eration Cards (PAC), with the most important column being
the Adaptive Logic Modules (ALM), which consist of both
programmable logic and registers (REGs). It is built based
on the hello fpga sample project provided by Intel3. Hence,
it consists of Intel-provided modules for interfacing with it
from software. The increase in utilization of our accelerator
compared to the sample project reflects its actual utilization.
The accelerator is very compact, as it barely increases the
amount of total FPGA resources (ALMs).

3The 03a_hello_world_mpf sample from the commit #ec7e78f of
https://github.com/OPAE/intel-fpga-bbb

https://github.com/OPAE/intel-fpga-bbb

	Introduction
	Background
	Heterogeneous Computing
	Cache Organization
	Data-Direct IO (0.85DDIO)
	Cache Attacks
	Eviction Set Construction
	Experimental Setup

	Double Trouble: Combined Cache Attacks
	Threat Model
	Key Properties
	Spatially Limited Interaction With LLC
	Reading Without Consequences
	Two-sided Cache Hierarchy Manipulation

	Fast Eviction Set Finding using 0.85DDIO
	Reduction Algorithms
	Acceleration with Discover-Expand
	Discover: Finding the First D-1 Addresses
	Expand: Finding More Addresses
	Algorithmic Complexity
	Low-level Aspects

	Structure of the LLC Set
	Revisiting Cache Eviction
	Eviction without Coherence Directory
	Reduced Eviction

	Implementation
	Evaluation and Discussion
	HW-Accelerated Eviction Set Finding
	Performance
	Comparison
	Robustness, Simplicity and Stealth

	Amplitude-Based Covert Channel
	Reduced Eviction

	Related Work
	Cache-based Side Channel Attacks
	Countermeasures

	Conclusion
	Access Time
	Cache Manipulation Details
	Replacement Policy
	Revisiting Eviction (Inverse Variant)
	AES T-Tables
	FPGA Utilisation

