
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Cache Side-Channel Attacks
on Existing and Emerging
Computing Platforms

Antoon Purnal

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

June 2023

Supervisor:
Prof. dr. ir. Ingrid Verbauwhede





Cache Side-Channel Attacks on Existing and
Emerging Computing Platforms

Antoon PURNAL

Examination committee:
Prof. dr. ir. Paul Sas

Chairman
Prof. dr. ir. Ingrid Verbauwhede

Supervisor
Prof. dr. ir. Frank Piessens
Dr. Benedikt Gierlichs
Assoc. Prof. Daniel Gruss

Graz University of Technology, Austria
Prof. Thomas Eisenbarth

University of Lübeck, Germany

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Electrical Engineering

June 2023



© 2023 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Antoon Purnal, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.



Preface

As I write the final words to this chapter of my life, I want to express my
appreciation to some of the people who were along for the ride.

I want to start by thanking my supervisor, Ingrid Verbauwhede, for bringing
me on board to pursue a PhD degree in her group. Ingrid, thank you for the
opportunities and your sustained support. I will not forget your confidence and
trust in me, granting me the academic freedom necessary to carve my own path.

I want to express my gratitude to Frank Piessens, Benedikt Gierlichs, Daniel
Gruss, and Thomas Eisenbarth. I am humbled to be evaluated by such an
eminent committee. I thank Paul Sas for chairing the final phase of the PhD.

During my time at COSIC, I saw many people come and go. I thank my current
and former colleagues for contributing to a pleasant and enriching atmosphere.
The group is too large and my cache too incoherent - I dare not enumerate you.
I consider myself lucky to have had the pleasure of sharing coffee, cakes, beers,
or other poisons with many of you. I hope our paths cross again. Throughout
the whole PhD, I had Furkan as my office mate. I learned a lot from him and
will long remember the Daily Trouble calls that powered our first paper together.
In my first year in the office, I also enjoyed the pleasant company of Pieter.

COSIC is a nice and stimulating place to work, as evidenced by how swiftly I
returned to the office when possible. I want to thank Lennert and Arthur for
doing the same during what feels like the dark ages of the PhD. The hardware
and cosinet groups deserve credit for being excellent gatherings for streamlining
work in progress. For the cosinet meetings, in particular, it is cute how we keep
pretending that a one-hour slot is sufficient for our discussions. I apologize to my
fellow humans in the hardware group for the mind-numbing timer experiment.

I thank the many students over the years. I hope I impacted some of you
(positively) as thesis supervisor, ombudsperson, or teaching assistant.

i



ii PREFACE

Several funding agencies made my research possible. I want to highlight the
Research Foundation - Flanders (FWO) for granting me a PhD fellowship.

I want to recognize the delightful non-technical staff at COSIC. Péla, Elsy, Wim,
Dana, Saartje, you are not on any paper, but COSIC would not be the same
without you. I also want to acknowledge the gentlemen of the ESAT system
group. Microarchitectural research without root privileges is tricky. Still, thank
you for facilitating it in the best way possible.

Beyond COSIC, I had the privilege and pleasure to meet several bright and
funny researchers. I want to thank the fine people from Daniel’s group at TU
Graz. I especially want to mention Lukas, the wingman on my first big paper,
Andreas and Jonas. Thanks for selectively enriching my German vocabulary.
Despite the short walk from COSIC to DistriNet, I only properly got to know
several members in a van in California. I don’t egret [sic] that trip at all.
Furthermore, I thank Thomas Unterluggauer for the interesting discussions and
brainstorms before and during my time at Intel.

Beyond research, I want to recognize some special people. From the early
days, I could count on my buddies from Rotselaar: Jan-Willem & Elise, Jeffrey,
Wannes, Vinnie, Daan & Tinneke. It fills me with joy to see that we are still
going strong. After arriving in Leuven, through sheer coincidence, I met a
fantastic group of people: Laura & Nick, Lucky & Annabel, Tuur & Iris, Ellen,
Sofie. Spending more time in your presence is more better. I often get to enjoy
the company of Bernd & An Sofie, Jonathan & Lotte, Simon & Nina, Adriaan &
Mira, Evelien, Luuk, Ward. I look forward to the day we reach a PhD-majority.
Special thanks go out to Anthony for being in the correct timezone to attend
my defense, and to Robbert for being such a remarkable and inspiring copain.

I want to thank my family, especially my parents and brother Sam, for everything
they have done for me. Mom, dad, this thesis would not have been written
without your support. Thank you for encouraging me to pursue an engineering
degree, and for dissuading me from trying to become a legendary guitar player.
(Almost a decade later, I wonder what the alternative timeline looks like.)

The concluding words of praise are reserved for my favorite person. My dear
Femke, I may not express it enough, but I feel privileged to share a life with
someone as unselfish, kind, and supportive as you. No matter which chapters
lie ahead, I look forward to writing them together. Thanks for being you.

I deeply appreciate the people who are close to me. I hope they know it. Though
they may not read this thesis from cover to cover, it is dedicated to them.

Toon Purnal
Leuven, June 2023



Abstract

The act of executing a program on a computing platform produces inadvertent
side effects that depend on the data being processed. Microarchitectural side-
channel attacks leverage the side effects stemming from interference in shared
hardware components to extract potentially sensitive data. Arguably the most
important class of microarchitectural side-channel attacks are cache attacks,
which target the shared cache hierarchy. This thesis advances the understanding
of the capabilities of cache attacks in conventional and novel execution contexts.
In addition, it contributes to the defensive landscape through a critical security
assessment of promising, low-overhead mitigations.

The first line of research explored in this dissertation concerns advanced cache
attack techniques. Our first contribution is the development of Prime+Scope, a
low-requirement and cross-core cache contention attack that delivers the highest
temporal precision to date. Our second contribution is a thorough exploration of
the cache attack surface in emerging heterogeneous computing platforms, where
an attacker may have access to one or more hardware accelerators. We show how
a malicious FPGA accelerator may not just accelerate legitimate computations
but also attacks, while consuming a negligible amount of resources.

The second line of research targeted by this dissertation advances the state
of the art of cache attack mitigations. To this end, it critically examines two
influential, transparent and low-overhead countermeasure classes. First, we
perform a systematic analysis of cache randomization, which is a hardware
countermeasure that injects entropy into the address-to-index mapping of the
cache. Second, we study the effectiveness of restricting the availability of high-
precision sources of time. Our findings indicate that minuscule timing differences
can be converted and amplified to sidestep this restriction, ultimately enabling
even a human observer to distinguish between a single cache hit or cache miss.

iii





Beknopte samenvatting

Het uitvoeren van een computerprogramma veroorzaakt onbedoelde nevenef-
fecten die afhankelijk zijn van de verwerkte gegevens. Microarchitecturale
nevenkanaalaanvallen maken gebruik van de neveneffecten die ontstaan
door interferentie in gedeelde hardwarecomponenten. De meest invloedrijke
microarchitecturale nevenkanaalaanvallen zijn cacheaanvallen. Dergelijke
aanvallen richten zich op de hierarchie van caches in moderne processoren.
Deze thesis onderzoekt de eigenschappen en mogelijkheden van cacheaanvallen
in conventionele en nieuwe uitvoeringsomgevingen. Bovendien draagt het bij aan
het beschermen van toekomstige systemen door veelbelovende tegenmaatregelen
aan een kritische analyse te onderwerpen.

Het eerste deel van dit proefschrift beschrijft nieuwe geavanceerde cacheaan-
valtechnieken. Onze eerste bijdrage is de ontwikkeling van Prime+Scope, de
kernoverschrijdende cacheaanval met ’s werelds hoogste nauwkeurigheid in
het tijdsdomein. Onze tweede bijdrage is een grondige exploratie van cache-
gebaseerde aanvalsmogelijkheden in opkomende heterogene computerplatformen.
We demonstreren hoe een kwaadwillende FPGA-accelerator niet alleen legitieme
berekeningen kan versnellen, maar ook kan assisteren bij cacheaanvallen.

Het tweede deel van deze dissertatie bestudeert defensieve maatregelen tegen
cacheaanvallen. Hiertoe analyseren we twee invloedrijke en beloftevolle
verdedigingstechnieken. Ten eerste voeren we een systematische analyse uit
van cache-randomisatie, een hardwarematige maatregel die entropie toevoegt
aan adres-naar-index-toewijzing in de cache. Ten tweede bestuderen we de
effectiviteit van het uitschakelen van nauwkeurige bronnen van tijd. Onze
bevindingen geven aan dat deze beperking kan worden omzeild door het omzetten
en versterken van minuscule tijdsverschillen. Hierdoor kan zelfs een menselijke
waarnemer het onderscheid maken tussen een enkele cache-hit of cache-miss.

v





List of Abbreviations

AES Advanced Encryption Standard.

AMD Advanced Micro Devices.

API Application Programming Interface.

BP Branch Prediction.

BPU Branch Prediction Unit.

CAT Cache Allocation Technology.

CD Coherence Directory.

CPU Central Processing Unit.

DCA Direct Cache Access.

DDIO Data Direct IO.

DES Data Encryption Standard.

DMA Direct Memory Access.

DRAM Dynamic Random Access Memory.

dTLB Instruction Translation Lookaside Buffer.

FPGA Field Programmable Gate Array.

GPU Graphics Processing Unit.

HPC Hardware Performance Counter.

vii



viii List of Abbreviations

IO Input-Output.

ISA Instruction Set Architecture.

iTLB Instruction Translation Lookaside Buffer.

KASLR Kernel Address Space Layout Randomization.

L1 Level 1 Cache.

L1d Level 1 Data Cache.

L1i Level 1 Instruction Cache.

L2 Level 2 Cache.

LLC Last-Level Cache.

MESI Modified Exclusive Shared Invalid.

MLC Mid-Level Cache.

NIC Network Interface Card.

NRE Non-Recurring Engineering.

OS Operating System.

PCIe Peripheral Component Interconnect Express.

PRNG Pseudorandom Number Generator.

RDTSC Read Time-Stamp Counter.

RISC Reduced Instruction Set Computer.

ROB Reorder Buffer.

RX Receiver.

SGX Software Guard Extensions.

SLA Service-Level Agreement.

SMT Simultaneous Multi-Threading.

SNR Signal-to-Noise Ratio.



LIST OF ABBREVIATIONS ix

TEE Trusted Execution Environment.

TLB Translation Lookaside Buffer.

TSX Transactional Synchronization Extensions.

TX Transmitter.





Contents

Abstract iii

List of Abbreviations ix

Contents xi

List of Figures xiii

List of Tables xv

I Cache Side-Channel Attacks and Defenses 1

1 Introduction 3
1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Organisation of this Dissertation . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 CPU Organization . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Layers of Abstraction . . . . . . . . . . . . . . . . . . . 9
2.1.2 Hardware Organization . . . . . . . . . . . . . . . . . . 10
2.1.3 Software Organization . . . . . . . . . . . . . . . . . . . 12

2.2 Cache Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Working Principle . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Multi-level Cache Hierarchy . . . . . . . . . . . . . . . . 14
2.2.3 Cache Metadata . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Interacting with the Cache . . . . . . . . . . . . . . . . 17

2.3 Microarchitectural Timing Side Channels . . . . . . . . . . . . 18
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xi



xii CONTENTS

3 Cache Side-Channel Attacks 21
3.1 Microarchitectural Timing Attacks . . . . . . . . . . . . . . . . 21

3.1.1 Attack Targets . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Threat Models . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Shared Microarchitectural Resources . . . . . . . . . . . 23
3.1.4 Comparing Microarchitectural Leakage Sources . . . . . 24

3.2 Cache Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Cache Attack Techniques . . . . . . . . . . . . . . . . . 27
3.2.2 Cross-Core Cache Attacks . . . . . . . . . . . . . . . . . 30
3.2.3 Routines for Constructing Eviction Sets . . . . . . . . . 31
3.2.4 Practical Considerations . . . . . . . . . . . . . . . . . . 32
3.2.5 Relation to Other Microarchitectural Attacks . . . . . . 34

3.3 My Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Defenses Against Cache Side-Channel Attacks 39
4.1 Countermeasure Strategies . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Remove the Channel . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Decrease the Signal-to-Noise Ratio of the Channel . . . 42
4.1.3 Block the Encoding of the Secret . . . . . . . . . . . . . 43
4.1.4 Block the Decoding of the Secret . . . . . . . . . . . . . 44
4.1.5 Detect the Attack at Runtime . . . . . . . . . . . . . . . 45

4.2 Randomization-based Protected Caches . . . . . . . . . . . . . 46
4.3 My Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion 51

Bibliography 53

II Publications 75

6 Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks 79

7 Double Trouble: Combined Heterogeneous Attacks on Non-
Inclusive Cache Hierarchies 119

8 Systematic Analysis of Randomization-based Protected Caches 153

9 ShowTime: Amplifying Arbitrary CPU Timing Side Channels 193

Curriculum Vitae 227



List of Figures

2.1 High-level processor organization. . . . . . . . . . . . . . . . . . . 11
2.2 Set-associative cache organization (with 2s sets and W ways). . 14
2.3 Multi-level cache hierarchy. . . . . . . . . . . . . . . . . . . . . 15

3.1 Cache attack techniques. Each technique (i.e., cache collision,
status, contention, occupancy, replacement and coherence)
comprises a preparation stage and a measurement stage.
Typically, a timing measurement is used to distinguish between
cases A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 LLC set and slice index bits (Intel Xeon Platinum 8280). . . . . 31

4.1 Strategies to defend against cache timing attacks. . . . . . . . . 40
4.2 Randomized skewed cache. . . . . . . . . . . . . . . . . . . . . . 46
4.3 Positioning of my cache randomization research and follow-up

work (tier-1 venues in bold). . . . . . . . . . . . . . . . . . . . 49

xiii





List of Tables

3.1 Microarchitectural side-channel attacks. Those that are based
on core-shared cache resources are highlighted. . . . . . . . . . 26

3.2 Cross-core cache attack comparison. . . . . . . . . . . . . . . . . 31

xv





Part I

Cache Side-Channel Attacks
and Defenses

Haste makes waste.

English Proverb

1





Chapter 1

Introduction

Our society increasingly relies on digital infrastructure. As we become
surrounded by computing devices, we entrust them with our medical and
financial data and depend on them to operate critical infrastructure. The
heart of a computing device is its processor, an incredibly sophisticated piece of
(mostly) silicon on which computer programs are executed. Modern processors
are the result of decades of engineering and feature a wide array of performance
optimizations to satisfy an increasing hunger for inexpensive computing power.

Today, computing devices often execute software originating from multiple,
mutually distrusting sources. The emergence of cloud computing even embeds
this trend as a core part of its value proposition, i.e., the amortization of the
fixed acquisition and operational costs of computer infrastructure by sharing
it among different customers. However, the viability of sharing a computing
system among multiple parties relies on a proper separation between them.

More Than Meets The Eye. To a keen observer, there is often a greater
amount of information available than that which is directly apparent on the
surface. People may unintentionally reveal their preferences through their body
language, a vault may reveal its access code through the clicks it produces, and
the accumulation of mail in the mailbox may give away that its owners are
on vacation. In computing systems, similar sources of incidental information
leakage exist, and the technical term describing them is side channels.

The central side channel to this publication-based thesis is time. In the context
of modern computing systems, the passage of time is software-observable and
correlates with the activity of other processes running on a shared hardware

3



4 INTRODUCTION

platform. An essential and ubiquitous source of timing variations is a cache, a
buffer that holds particular data close to the processor under the expectation
of it being used at a later point in time. A cache inadvertently produces a
timing side channel on which elements are in the cache and which are not;
accessing some data is fast, and accessing other data is slow. A cache attack,
then, cleverly weaponizes the side channel to distinguish the former from the
latter to spy on other processes across software-defined isolation boundaries.

Side channels arising from hardware processor optimizations are, in some sense,
by design. Caches are instrumental for performance by reducing round trips
to comparatively slow main memory. After half a century of performance
engineering and intense competition between vendors, it should come as no
surprise that many leaky optimizations exist. The vast attack surface of modern
processors, together with the challenging nature of protecting performance-
critical components, results in a flourishing area of research.

1.1 Main Contributions

Recognizing the inherent security-performance trade-off imposed by processor
caches, this dissertation seeks to understand better the low-level capabilities
of cache attacks on existing and emerging computing platforms. It also aims
to contribute to the future defensive landscape by studying the effectiveness of
promising, low-overhead, and state-of-the-art cache attack mitigations.

In alignment with these objectives, this dissertation unpacks and answers the
following main research questions (RQs). For each research question, I selected
a representative main-author publication that aims to answer it.

RQ1. What are the true limits to the precision of cache attacks?

Most cache attacks infer the memory access patterns of other programs by
measuring the access latency of specific cache lines. Such measurements are
believed to be intrinsically destructive, i.e., the side effects of each measurement
need to be reverted before the next one can occur. Moreover, the most broadly-
applicable attacks, i.e., those based on contention for shared cache resources,
need to perform several memory accesses (e.g., 12 or 16) as part of every
measurement. Both of these measurement properties adversely affect the time
precision of the attack, and both are considered to be unavoidable.



MAIN CONTRIBUTIONS 5

In this thesis, I question the fundamental nature of these limitations, and ask:
What is the optimal time precision for cache attacks? Can an attacker perform
non-destructive cache contention measurements with just one memory access?

These questions form the subject of my CCS 2021 paper, which is included as
Chapter 6 in this thesis.

Prime+Scope: Overcoming The Observer Effect
for High-Precision Cache Contention Attacks
Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede
ACM Conference on Computer and Communications Security, 2021

RQ2. How are emerging computing platforms affected?

The increasing demand for processing power, together with the diminishing
economic returns on technology scaling, fuels the trend of hardware specialization.
By complementing general-purpose processing units with domain-specific
accelerators, computing systems become heterogeneous. Heavily optimized
for specific tasks, accelerators provide much better performance per unit of cost
(or energy), making them attractive for cloud computing contexts. Particularly
promising are Field Programmable Gate Arrays (FPGAs) which, due to their
reconfigurability, recover much of the flexibility lost due to hardware acceleration.

As accelerators interface with the processor caches, I ask: Are heterogeneous
computing systems susceptible to attacks by malicious accelerators? Do combined
software-hardware adversaries have more control over the shared cache?

I explore this forward-looking research problem in my USENIX Security 2022
article, which is included as Chapter 7 in this thesis.

Double Trouble: Combined Heterogeneous Attacks
on Non-inclusive Cache Hierarchies
Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede
USENIX Security Symposium, 2022

RQ3. How secure are state-of-the-art countermeasures?

There exists a complicated trade-off between the performance-enhancing
capabilities of hardware components and their impact on security. Caches,
especially, are so instrumental to the performance of modern processors that



6 INTRODUCTION

modifications to them, however small, face strict practical constraints if they
are ever to be implemented. Very recently, cache randomization was proposed
as a scalable, transparent, and low-overhead countermeasure, which attracted
considerable academic attention.

In light of these developments, I ask: How secure are randomization-based secure
caches? Are they susceptible to probabilistic attacks? How important is the
cryptographic strength of the randomization function?

My IEEE S&P 2021 publication, included as Chapter 8, examines this problem.

Systematic Analysis of Randomization-based
Protected Cache Architectures
Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede
IEEE Symposium on Security and Privacy, 2021

RQ4. Do timing attacks require accurate timers?

Microarchitectural timing attacks infer secrets from observing whether specific
actions are fast or slow. Often, the underlying timing differences are in the
order of 10 ns-100 ns. Modern processors and environments expose high-precision
timers that enable attackers to observe such minuscule timing differences. It
is, therefore, natural to wonder whether simply disabling or restricting these
timing sources would defeat microarchitectural side-channel attacks. Enticed
by this potential, all major browsers have already adopted similar restrictions.

However, I ask: Are microarchitectural side-channel attacks thwarted in the
absence of high-precision timers? Can arbitrary timing differences be amplified?
Is it still possible to leak memory access patterns across processor cores?

I answer these questions as part of my AsiaCCS 2023 article, which is incorporated
as Chapter 9.

ShowTime: Amplifying Arbitrary CPU Timing Side Channels
Antoon Purnal, Márton Bognár, Frank Piessens, and Ingrid Verbauwhede
ACM Asia Conference on Computer and Communications Security, 2023



OTHER CONTRIBUTIONS 7

1.2 Other Contributions

In addition to the publications incorporated in this thesis, I contributed to
several other articles during my PhD research. A small selection of these papers
is highlighted below. A complete list of publications can be found in Part II.

Scatter and Split Securely: Defeating Cache Contention and Occupancy
Attacks. This work proposes a combined randomization-based and isolation-
based secure cache that defends against the attacks I outline in Chapter 8, while
retaining attractive performance. The design leverages a novel cryptographic
construction to enable security domains to compete for randomized and
partially-overlapping cache resources. Victim cache lines automatically become
inaccessible to an attacker after a few observations. Afterward, an attacker can
no longer evict them, no matter which and how many accesses they perform.

This article appeared at IEEE S&P 2023 in collaboration with Lukas Giner,
Stefan Steinegger, Maria Eichlseder, Thomas Unterluggauer, Stefan Mangard,
and Daniel Gruss.

Forkcipher: A New Primitive for Authenticated Encryption of Very Short
Messages. Short messages are a previously-overlooked optimization target
for authenticated encryption. This work proposes a novel cryptographic
primitive called a forkcipher which, roughly speaking, computes two independent
tweakable permutations of an input block at an amortized computational cost.
The article presents a forkcipher instantiation called ForkSkinny, three provably
secure modes of operation, and an evaluation for hardware implementations.

This article appeared at ASIACRYPT 2019 in collaboration with Elena Andreeva,
Virginie Lallemand, Reza Reyhanitabar, Arnab Roy, and Damian Vizár.

1.3 Organisation of this Dissertation

There are two parts to this publication-based doctoral dissertation. The
first part is concerned with providing the necessary preliminaries, outlining
the state of the art, and positioning the contribution of this thesis in the
context of microarchitectural attacks and defenses. Chapter 2 exposes the
basic organization of modern processors, covers the cache hierarchy, and
introduces basic notions on side-channel attacks. Chapter 3 covers state-of-
the-art microarchitectural side-channel attacks. It establishes that the cache
hierarchy is one of the most critical hardware components to examine due to its



8 INTRODUCTION

combined impact on performance and security. Chapter 4 covers state-of-the-art
defenses against microarchitectural side-channel attacks, again focusing on the
cache hierarchy. Chapter 5 contains concluding remarks and provides an outlook
on the future of microarchitectural side-channel research.

The second part of this doctoral thesis first provides a list of all publications,
which is a superset of those presented in Sections 1.1 and 1.2. Chapters 6 to 9
contain the selection of peer-reviewed articles that constitute this dissertation.
These articles are included without modifications from their peer-reviewed
versions, except for editorial changes to accommodate a consistent single-column
layout throughout this manuscript.



Chapter 2

Background

This chapter provides the necessary background for reasoning about microar-
chitectural side-channel attacks. Section 2.1 covers the organization of modern
processors and the hardware components that underlie their phenomenal
performance. One such component is the cache hierarchy, a fundamental
part of the memory subsystem, which is the subject of Section 2.2. Section 2.3
introduces basic notions of microarchitectural side-channel attacks. As our
exposition assumes some familiarity with computer architectures, novice readers
are recommended to refer to introductory material when necessary [90, 148].

2.1 CPU Organization

2.1.1 Layers of Abstraction

Managing Complexity. The beating heart of present-day computing systems
is their processor, or Central Processing Unit (CPU). Built from billions of tiny
transistors, they are an incredibly sophisticated feat of engineering, powering
much of the modern world economy. To make them perform a valuable function,
a developer writes a piece of software. This piece of software describes an
algorithm that needs to be executed on the processor (hardware). Software is
written as code in a programming language which, through several compilation
steps, is translated to assembly code and later to machine code. The machine
code executes on the processor, which has a microarchitecture comprising several
functional units and their interconnection. These functional units are built

9



10 BACKGROUND

from standard cells, which are composed of transistors. During a complicated
manufacturing process, these transistors are constructed from physical materials.

To manage all this complexity, computing systems abide by well-defined
abstraction layers that encapsulate the complexity of the layers below. The
interaction between abstraction layers is determined by their interface, which
essentially serves as a contract; it specifies the functional behavior that the
layer above can expect from the layer below.

Instruction Set Architecture. The interface this thesis is concerned with is
the one between software and hardware. This abstraction layer is referred to as
the Instruction Set Architecture (ISA). It specifies the contract between, on the
one hand, the final piece of machine-readable code that specifies the instructions
to be performed by the machine and, on the other hand, the microarchitecture
of the processor that implements the execution of these instructions. The ISA
facilitates the compilation of arbitrary software to a sequence of instructions
that can be executed on any processor that implements this ISA. Examples of
ISAs are x86, Arm-v8 and RISC-V. This thesis focuses on x86, which is used
by Intel and AMD processors.

CPU Microarchitecture. The microarchitecture of a processor is its imple-
mentation of the ISA. Much of the performance advances throughout the
twentieth century were achieved by increasing the operating frequency of the
processor. However, the hardware manufacturer can include other optimizations
that, transparently to the end user, enhance the average-case performance of
many applications. The basic principles underlying many optimizations at the
microarchitectural level are parallelism, i.e., the hardware’s ability to perform
actions simultaneously; locality, i.e., the tendency of algorithms to repeatedly
touch the same data; and prediction, i.e., the ability to predict the future
behavior of a program through its actions in the past [148]. Provided that the
processor behaves in a functionally correct manner, as specified by the ISA, the
manufacturer is free to introduce optimizations in the microarchitecture.

2.1.2 Hardware Organization

Modern CPU Pipeline. Figure 2.1 is a simplified depiction of a modern CPU.
Each CPU core has an execution pipeline with a frontend and backend. The
CPU frontend is responsible for fetching the instruction stream and decoding it
into a stream of micro-ops that are executed in the CPU backend. The frontend
features several components to speed up this process, such as caches to accelerate



CPU ORGANIZATION 11

Figure 2.1: High-level processor organization.

address translation (iTLB in Figure 2.1) and retrieve instructions faster (L1i),
a branch prediction unit (BPU) to predict the outcome of unresolved branches,
and other components like the micro-op cache (µop) and loop stream decoder
(not depicted). The output of the CPU frontend is a stream of micro-ops. In
the backend, these micro-ops get executed on the execution units (EU), which
are batched in execution ports. Data loads occur through the L1 data cache
(L1d), and the dTLB accelerates the address translation.

Instruction-Level Parallelism. To exploit the available parallelism present in
the micro-op stream, modern processors are typically superscalar, i.e., multiple
micro-ops may be executed in parallel within one cycle. In addition, they
typically employ out-of-order execution, i.e., micro-ops may execute ahead of
older micro-ops so long as their dependencies are already resolved. Modern
processors also implement speculative execution, i.e., execution may be steered
along one of the outcomes of a branch before said branch is resolved.

The Reorder Buffer (ROB) is responsible for reordering the micro-ops and
issuing them when they are ready to be executed. These micro-ops are then
dispatched across the execution ports and executed in the execution units.
However, micro-ops may only be retired, i.e., have their result committed to
the architectural state, in program order. The ROB flushes the pipeline in case
of executed but not retired instructions, thereby preventing these incorrectly
executed instructions from affecting the software-visible state of the program.

Thread-Level and Task-Level Parallelism. Modern processors have more
than one core, as depicted in Figure 2.1. This allows them to speed up
the execution of different threads within a process, or different processes
altogether, so long as these are independent enough to be executed in parallel.
In modern computing contexts, different programs or even different tenants may



12 BACKGROUND

be executing simultaneously on different cores. Processors with hyperthreading,
or simultaneous multithreading (SMT), are able to process multiple independent
instruction streams on a single (physical) core, giving software the impression
of multiple (logical) cores at a lower cost. Logical cores share many of the
resources in the processor frontend and backend. Some parts of the processor
are shared by all the cores, such as the last-level cache (LLC), its interconnect,
and main memory.

Modern high-performance computing servers may have multiple CPU sockets
within the same system, each comprising a number of cores. Sockets may have
accelerators attached to them, which are heavily optimized for specific tasks,
e.g., networking or graphics processing.

2.1.3 Software Organization

System Software. In most cases, application software does not execute directly
on the processor. Instead, it is mediated by a privileged piece of software called
the operating system (OS). The OS instantiates the execution of other programs
as processes, and is responsible for scheduling their execution and allocating
system resources for them. As an additional layer of abstraction, a hypervisor
provides the ability to have different virtual machines (VMs) with their own OS
and application software on the same physical device. The OS (or hypervisor)
needs to ensure that different processes (or VMs) are isolated from each other.
Today, this is implemented using a feature called virtual memory.

Virtual Memory. Instead of directly interacting with actual (physical) memory,
programs experience the abstraction of their own exclusive virtual address
space. The operating system or hypervisor maps virtual addresses to physical
addresses, and stores this information in page tables. The translation from
virtual to physical addresses occurs in parallel to the retrieval of the data from
the L1d cache. Recently-used translations are buffered in cache-like structures
called Translation Lookaside Buffers (TLBs). The unit of granularity is the
page, which is typically 4 KiB in size but may differ across platforms. Modern
processors typically support larger pages in addition to the default smallest page
(e.g., 2 MiB and 1 GiB, which are larger to reduce the number of translations
that are needed). Part of the virtual address, the page offset bits, is preserved
across address translation.



CACHE HIERARCHY 13

2.2 Cache Hierarchy

2.2.1 Working Principle

Locality of Memory Accesses. The cache is one of the most important
hardware components to improve average software performance [148]. A cache
is a piece of storage that buffers data (including both instructions and actual
data) that is expected to be used soon. It is small, relative to the total physical
memory available, and fast, relative to the speed of contemporary main memory
technology. The motivating observation underlying the working principle of
cache is that a program’s memory accesses are typically not uniformly randomly
distributed across time, nor space. Instead, the vast majority of programs
exhibit strong temporal locality, i.e., memory locations touched at a given point
in time are likely to be accessed again at a later time, and spatial locality, i.e.,
accessing a memory location increases the posterior probability of accessing
neighboring memory locations.

Cache Lines. When a program performs an access to memory, it may be
transparently served from the cache instead, if it is available (i.e., a cache hit).
If the data corresponding to the requested memory location is not cached, i.e.,
a cache miss occurs, it is served from memory and typically installed in the
cache in anticipation of future accesses. Instead of only caching the word (e.g.,
64 bits) corresponding to a memory address, the cache transfers data to and
from memory in larger cache lines. A typical cache line size is 64 bytes.

Cache Associativity. Caches may differ in their associativity, i.e., the number
of locations in which a specific memory address can be cached. If a cache line
may be installed at any location in the cache, that cache is said to be fully
associative. However, given that caches may contain several thousands of cache
lines, a fully associative organization consumes a prohibitive amount of power
due to the simultaneous lookup of all the cache lines. To avoid this, cache lines
are often indexed by their memory address. In a direct-mapped cache, a memory
address can only be installed in one location. Most caches are set-associative,
as in Figure 2.2, which means that addresses are mapped into sets and may be
installed in any of the cache lines (ways) of the set. The part of the address that
serves to identify a cache line while it is cached is called its tag. Two addresses
that are mapped to the same set are said to be congruent.



14 BACKGROUND

Figure 2.2: Set-associative cache organization (with 2s sets and W ways).

2.2.2 Multi-level Cache Hierarchy

Cache Hierarchy. It turns out that a single large cache is not the most efficient
use of resources. Instead, modern processors feature a multi-level cache hierarchy.
On Intel processors, there are three levels: L1, L2 (or MLC, for mid-level cache)
and L3 (or LLC, for last-level cache). The lower the level, the smaller and faster
it is; the higher the level, the larger and slower it is. When a read request is
issued by the core, first the L1 cache is queried. If this is a cache miss, the
next-level cache is queried, and so on. If none of the cache levels hold a copy of
the requested data, the request goes to the main memory directly.

On modern Intel processors, each CPU core has its own private L1 and L2
caches, whereas the last-level cache (LLC) is shared among all the cores. The
L1 cache is separated into a separate instruction (L1i) and data (L1d) cache,
whereas the L2 and LLC do not distinguish between instructions and data.
The exact access latency depends on the processor, but it typically takes a
handful of cycles to fetch data from L1, around ten cycles from L2, 40 to 50
cycles for the LLC, and a few hundred cycles to fetch data from main memory.
Representative sizes, as of today, are 32 KiB for both L1i and L1d caches, 256
KiB-1 MiB for L2 caches, and several MiB for the LLC.

Addressing Modes. The cache set indexing function may be based on the
memory location’s virtual or physical address. The L1 cache is typically virtually
indexed to allow its lookup to occur in parallel to the address translation, which
produces the physical tag. This limits the number of L1 sets to the number
of cache lines present in the smallest page size supported by the system. On
x86 CPUs this is 4 KiB, so 64 sets; on Apple CPUs this is 16 KiB, so 256 sets.
Additionally, it makes it susceptible to aliasing, where lines with identical page
offset bits are conservatively considered to refer to the same physical address



CACHE HIERARCHY 15

Core Core

L1i/L1d L1i/L1d

L2 L2

LLC

Core Core

L1i/L1d L1i/L1d

L2 L2

LLC

RAM

NIC FPGA

PCIe Bus
(DCA)

Figure 2.3: Multi-level cache hierarchy.

to avoid read-after-write and write-after-read hazards. The L2 and LLC are
only queried upon an L1 cache miss, at which time the address translation
has hopefully already been completed. Therefore, they are typically physically
indexed and physically tagged.

Distributed LLC. Contemporary last-level caches (LLCs) are considerable in
size. Therefore, they are implemented as slices, distributed across the cores.
The reason for this, as opposed to a monolithic design, is to avoid contention
hotspots and distribute the load across slices that may be queried in parallel.
The assignment from (physical) memory addresses to slices is determined by
a slice indexing function (referred to as complex addressing), which is static
for a given processor. Traffic between the LLC slices happens over the LLC
interconnect. Common implementations of the interconnect include a one-
dimensional ring-bus topology and a two-dimensional mesh topology, where
the latter scales better with increasing core counts. Note that the distributed
nature of the LLC implies that its access time depends on the LLC slice to
which the requested cache line is mapped.

Inclusion Invariants. There is typically a well-defined relationship between
lines in different cache levels. A cache is said to be inclusive with respect to
another cache if lines present in the latter cache must also be present in the
former. A cache is exclusive with respect to another cache if any given line may
only exist in one of both cache levels at any given time. A cache that satisfies
none of these properties is said to be non-inclusive.

An inclusive LLC simplifies and speeds up lookups for data in other cores, as
lines cannot be present in the core-private caches without a copy in the LLC.
However, a clear drawback is the duplication of data in the L1 and L2 caches
due to inclusion, limiting the size of the L2 cache in practice. An inclusive LLC



16 BACKGROUND

design also implies that when a line is evicted from an inclusive last-level cache,
it is also automatically evicted from the lower-level cache. This mechanism,
referred to as back-invalidation, will be relevant in later chapters.

Traditionally, Intel LLCs used to be inclusive. Since 2017, however, a non-
inclusive LLC organization is becoming an increasingly prevalent design choice
among Intel processors. Nonetheless, its role for cross-core lookups is typically
taken up by another inclusive component [252], the coherence directory (CD),
or core valid bits.

Hardware Prefetching. A hardware prefetcher checks for memory accesses
that match its activating pattern and, to prevent future cache misses, prefetches
the memory locations that complete the extrapolated pattern. Several types
of prefetchers exist, such as next-line (or stream) prefetchers, which prefetch
one (or more) cache lines ahead of the latest access, or stride prefetchers, which
continue accesses to memory locations separated by a constant stride. On Intel
processors, the private L1 and L2 caches are equipped with hardware prefetchers,
which can be configured by privileged software [97].

Direct Cache Access. In the context of high-performance computing, servers
are increasingly equipped with domain-specific accelerators, like Network
Interface Cards (NICs), Graphics Processing Units (GPUs), and Field
Programmable Gate Arrays (FPGAs). As depicted in Figure 2.3, these
accelerators are attached to the CPU over Peripheral Component Interconnect
Express (PCIe). For performance reasons, they are tightly integrated with the
CPU and access memory directly through the LLC interconnect, i.e., direct
cache access (DCA) [92] as opposed to direct memory access (DMA). Intel’s
implementation of DCA is called Data Direct IO (DDIO) [99].

2.2.3 Cache Metadata

Replacement Metadata. When a new cache line is installed in a set-associative
cache, another one in the set needs to be removed (or evicted). The optimal
line to evict is determined by the future behavior of the program, which is
unpredictable. Modern caches implement replacement policies at the cache-set
level, to determine the sequence of evictions. Replacement policies are selected
based on how they affect cache hit rates, and on the size and complexity of the
circuit that implements them. We refer to the line to be evicted next as the
eviction candidate. In some circumstances, specific cache ways may be empty,
in which case they are typically preferentially filled over the eviction candidate.



CACHE HIERARCHY 17

Coherence Metadata. In a multicore processor, data may have local copies
in several caches. A cache coherence protocol serves to keep this data coherent
and typically associates cache lines with a coherence state. Most coherence
protocols are variants of MESI [147], which describe modified, exclusive, shared
and invalid states for each cache line. They also describe a state machine to
transition between states depending on the reads and writes to a cache line.
Cache coherence, being mainly relevant for cross-core lookups, is managed in
the LLC and, if the latter is non-inclusive, in the LLC and CD together.

2.2.4 Interacting with the Cache

Most state changes in the cache occur implicitly through reading and writing
to memory. However, modern ISAs endow the programmer with instructions
that provide an explicit interface with the state of the cache, diluting the strict
separation between architecture and microarchitecture.

Cache Invalidation. The x86 ISA contains cache line invalidation instructions,
such as the unprivileged clflush(opt) instructions. These instructions
explicitly remove lines from the cache hierarchy, even though there is no cache
conflict that causes their eviction.

Software Prefetch. The compiler or developer may know that a specific cache
line may be needed in the near future. An ISA may include software prefetch
instructions to communicate this knowledge to the hardware. On x86, there are
several prefetch instructions that install a memory location in the cache but
differ in their implementation. For instance, prefetchnta indicates that the
cache line may be preferentially evicted, and prefetchw changes the coherence
state of a cache line ahead of time to speed up future writes to it. Note that
software prefetch instructions are part of the compiled code and differ from the
hardware prefetcher, which is part of the microarchitecture.

Other Interactions on Intel Processors. Intel TSX provides hardware support
for encapsulating instructions in a transaction, satisfying the property that the
transaction either executes completely or is aborted. Conditions for aborting a
transaction include cache eviction events for memory addresses captured by the
transaction. Intel CAT [98] is a quality-of-service feature to configure which
LLC ways are available to which CPU cores. Intel DDIO [99] governs which
LLC ways are available for use by PCIe devices (e.g., NICs, FPGAs and GPUs).



18 BACKGROUND

Hardware Performance Counters (HPCs) [97] expose processor-internal events,
such as cache hits and misses, to inform performance engineering workflows.

2.3 Microarchitectural Timing Side Channels

Side Channel Attacks. A side channel (or incidental channel) refers to an
unintended information flow that, through inference, reveals another piece
of information. The name implies that it should be contrasted with a main
channel which may be any intentional functional behavior. Some examples of
intended functional behaviors include the computation of a cryptographic
algorithm on a device, typing a password on a keyboard, and converting
virtual addresses to physical addresses. Corresponding side channels may
include the instantaneous power consumption of the device, the sound of the
keys being pressed, and the time it takes to perform the translation. Over
the years, several side channels in computing systems have been discovered,
such as time [110], power consumption [112], electromagnetic emanations [59],
acoustics [12], temperature [94], and many more.

Side channels are mainly useful when they allow one to infer a piece of
information that is unavailable for direct observation. We refer to a side-
channel attack when an attacker uses leakage through a side channel to infer
secret information by an uncooperating victim.

Microarchitectural Side Channels. Microarchitectural side channels are
sources of leakage at the hardware-software interface of a computing system.
Indeed, a functionally correct program may exhibit a secret-dependent usage of
microarchitectural resources, e.g., accesses to various caches or utilization of
specific execution units. Through this usage, the program may expose its secret
information to an attacker. The predominant mechanism by which an attacker
can draw inferences on the usage of microarchitectural resources is time, which
constitutes the focus of this thesis.

In general, we say that programs encode their control flow and data access
patterns in the microarchitectural context. The microarchitectural context
encompasses the microarchitectural state, e.g., which lines are cached and which
are not, and the microarchitectural utilization at any point in time, e.g., the
usage of a functional unit like a multiplier. Leakage of the former type is said
to be stateful, whereas the latter type is referred to as stateless leakage.



CONCLUSION 19

Covert Channels. We distinguish between side-channel and covert-channel
attacks. When two parties communicate covertly, despite the system’s security
policy dictating that no communication channel should exist between them,
they are said to establish a covert channel. In the absence of a main channel,
these parties establish a communication interface through the intentional use
of side channels. Because of the implied intentionality of a covert channel,
the communicating parties are referred to as sender and receiver instead of
attacker and victim. In our setting, a sender process transmits information
by deliberately encoding it into its usage of microarchitectural resources. The
receiver then decodes this information through timing measurements.

Interacting with Time. Modern computing systems expose the passage of
time to software. On x86, high-precision readouts of time are available through
Read Time-Stamp Counter (RDTSC) instructions. Timing an action can be
implemented by surrounding this action with calls to the timing source. However,
care should be taken that the action is being timed, no more and no less.
This is typically ensured by instrumenting serialization instructions [81] (e.g.,
LFENCE/MFENCE on x86) or inserting data dependencies [143]. In the absence
of a dedicated timing interface, programs may implement one themselves
using a software counter [177]. In the browser, timers are available with
performance.now().

2.4 Conclusion

This chapter introduced the necessary background on the relevant parts of
modern computer organization. The cache hierarchy was identified as a
performance-critical but complex hardware component, which encodes a large
state that is shared across processor cores. We then introduced basic notions of
microarchitectural timing channels.





Chapter 3

Cache Side-Channel Attacks

In this chapter, we first provide a broad overview of microarchitectural timing
attacks (Section 3.1). Next, we turn to cache-based timing attacks, arguably
the most important subclass, and perform an in-depth exploration (Section 3.2).
Microarchitectural (cache-based) side-channel attacks are the subject of several
surveys [27, 61, 129, 192, 232] which, unfortunately, rapidly become out of
date as new attacks get discovered. For this reason, we do not attempt to
provide a complete survey and instead focus our efforts on recent trends and
state-of-the-art techniques.

3.1 Microarchitectural Timing Attacks

3.1.1 Attack Targets

Microarchitectural side-channel attacks leak the memory access patterns of other
processes. Therefore, if a program’s access patterns (i.e., its control flow or data
access patterns) depend on secret information, it is vulnerable to these attacks.
Several applications have been demonstrated to carry such dependencies.

Cryptography. Cryptographic implementations have been, and still are, a
typical attack target because they (repeatedly) operate on small and well-
defined pieces of secret data, i.e., cryptographic keys. Moreover, naive
implementations of cryptographic algorithms typically directly encode their
keys in the microarchitectural context through secret-dependent control flow or

21



22 CACHE SIDE-CHANNEL ATTACKS

data accesses. As a result, minor side-channel leakage proves to be sufficient to
extract these cryptographic keys [106, 110, 146], compromising the system-level
security properties that are based on their confidentiality.

Few branches in cryptography have been spared from microarchitectural side-
channel attacks. Attacks have been applied to symmetric-key cryptography,
most notable on block cipher implementations (e.g., DES and AES) [21, 81, 84,
143, 203, 204] but stream cipher implementations can also be vulnerable [64].
They have also been applied to implementations of public-key cryptosystems [20,
33, 128, 150, 151, 241, 250], where even a tiny amount of leakage may still
be exploitable [9, 22, 63]. Other attack examples include the revival of
classic padding oracle attacks [103, 169, 170] and attacks on a vulnerable
implementation of a pseudorandom number generator (PRNG) [39].

Other Targets. Besides cryptographic algorithms, other programs may also
operate on sensitive information. In this context, microarchitectural side-
channel attacks have enabled researchers to break kernel address space layout
randomization (KASLR) [75, 93, 120]. These attacks can also be used to spy
on user input, such as keystrokes or touchscreen swipes [121, 142, 165].

Using microarchitectural side channels, an attacker can determine which
website a user may be visiting, i.e., website fingerprinting [82, 142, 186,
196]; which other applications are running on the system, i.e., application
fingerprinting [83]; or which specific device is executing the attacker program
i.e., device fingerprinting [168, 200]. These side channels have also been used to
establish high-bandwidth covert channels in the cloud [136, 191] and infer when
different virtual machines are co-resident in the cloud infrastructure [165, 249].
Recently, they were employed to leak machine learning hyperparameters [91,
234], to reconstruct private databases [182], to track autonomous vehicles [130],
to implement stealthy computations [52], and to perform targeted online
deanonymization [245].

3.1.2 Threat Models

In a security evaluation, an attacker model (or threat model) captures the
capabilities that realistic adversaries are assumed to have. For microarchitectural
timing attacks, the attacker model is determined by two main classification
axes. The first is the proximity of the attacker’s execution w.r.t. the victim.
The second is the type of execution the attacker is assumed to have on the
computing platform on which the victim code is running.



MICROARCHITECTURAL TIMING ATTACKS 23

Execution Proximity. In general, the closer the attacker’s execution is to
the victim, the more resources are shared and the more interference (i.e.,
leakage) exists between attacker and victim. In the most extreme case, the
attacker and victim run on the same physical core, either in a time-sliced or
simultaneous fashion. In this case, they share resources like the L1 data [143], L1
instruction [2] and unified L2 [233] caches, and the core’s execution ports [6, 23].
More commonly, the attacker and victim may execute on the same machine but
on different CPU cores [101, 128, 241]. If they execute on different CPU sockets
of the same server, there are still some resources in which they can interfere [100,
152, 155]. An attacker may also have execution capabilities outside of, but
attached to, the computing device on which the victim is running, e.g., an FPGA
connected over PCIe [227]. Finally, an attacker may not have code execution on
the target system at all. In this case, she does not directly share any hardware
resources with the victim and has to interact with the microarchitecture of the
machine through an interface, e.g., by sending network packets [116, 176].

Execution Type. Regarding the execution capabilities of the adversary, the
most common assumption in the microarchitectural attack literature is that of
unprivileged (native) execution. This assumption applies to co-located tenants
in a cloud context or a malicious (or compromised) program on a personal
computing device. Another common execution context is a malicious web source
(i.e., person-in-the-browser) with sandboxed execution of, e.g., JavaScript or
WebAssembly code. These languages do not expose all instructions in the
ISA to the attacker. This restricts them from using, for instance, clflush,
fencing, or software prefetch instructions. The strongest execution type is native
execution with elevated privileges, which is relevant in the threat model of
trusted execution environments (TEEs), such as Intel SGX [28, 139, 208, 209].
Finally, peripheral devices vary widely in the expressiveness of their execution.
On an FPGA, for instance, an adversary can implement arbitrary logic; on a
NIC, an attacker does not have, in principle, direct code execution.

3.1.3 Shared Microarchitectural Resources

Microarchitectural side-channel attacks observe how other processes modulate
shared microarchitectural resources. We now classify some of these attacks by
the shared microarchitectural (sub-)component they target.

Cache. As outlined in Chapter 2, caches maintain several kinds of state, both
in data and metadata. Almost all of these may generate cross-process leakage. If
a cache line belongs to shared memory between attacker and victim, its caching



24 CACHE SIDE-CHANNEL ATTACKS

status may reveal accesses by the victim to the attacker. Memory access patterns
may also leak through cache contention, i.e., attacker and victim compete for
resources in the same cache set, slice or full cache. Programs may also encode
information in cache replacement or cache coherence metadata. Section 3.2
describes these leakage mechanisms in more detail.

Non-cache. Processes running simultaneously on the same physical core may
compete for resources in the processor frontend [161, 195] and backend, such
as execution units [3, 176] or their ports [6, 23, 70, 166]. These processes
also share branch prediction units [53, 55], TLBs [71], and they may introduce
false-dependencies on each other [140]. Processes running on any core within the
CPU socket may compete for bandwidth on the on-chip interconnect between
slices [45, 144, 220], or leak through hardware prefetchers [184]. Processes may
even interfere across connected sockets, e.g., in the DRAM controller [152] or
on the PCIe bus [193].

3.1.4 Comparing Microarchitectural Leakage Sources

Executing software on a modern processor exposes it to leakage through many
different timing side channels. These channels are not equal in their utility to
an attacker. We consider the following main classification metrics.

Cross-Core. A leakage source is more valuable to an attacker if it is shared
across processor cores. If it is not, an attacker is required to co-locate on
the same core as the victim in order to exploit it. This requirement may be
challenging to satisfy in practice, e.g., in public clouds [132]. Several OSes and
hypervisors disable multi-threading by default [68], allow to disable it [89], or
schedule processes at the level of physical instead of logical CPU cores [42].

Visibility. We refer to a hardware component as providing full visibility to
an attacker if all the monitored victim activity produces interference in this
component. A component only provides partial visibility if some of the victim
activity is filtered by other components (e.g., a memory access that hits in the L1
cache does not affect the state of the higher-level caches). Full visibility, therefore,
requires either the absence of such filtering components or a mechanism to
circumvent them. Inclusive LLCs provide full visibility, as lines evicted from
the LLC are automatically invalidated in the lower-level caches, forcing future
accesses to them to affect the LLC state.



MICROARCHITECTURAL TIMING ATTACKS 25

Not all leakage sources provide full visibility. For instance, memory accesses only
generate cache interconnect traffic if the data is not cached in L1 or L2 [144],
and only generate DRAM traffic if the data being queried does not have a copy
in any of the cache levels [152].

Spatial Granularity. The spatial granularity of a microarchitectural component
refers to the quantity of information it reveals to an attacker. We distinguish
between memory-indexed components, i.e., those that take a memory address
as input, and operation-indexed components, i.e., those for which the usage
depends on the micro-op (or instruction) that triggers it.

For memory-indexed components, the spatial granularity is higher the more
it restricts the space of memory addresses that cause the same interference.
Some leakage mechanisms only provide coarse-grained information, i.e., they do
not restrict the address space at all [134, 186], restrict it to a specific memory
page [71], or restrict it to the LLC slice that served the request [144]. Other
mechanisms reveal interference in the set to which the address maps, e.g., in the
cache [143], in DRAM [152], or in the branch predictor [53]. Some components
reveal the specific cache line that contains the memory address [81], or even
address information within a cache line [243].

For operation-indexed components, the spatial granularity is higher the more
it restricts the space of possible instructions that cause the interference, e.g.,
the execution port [6, 23] or the execution unit itself [3, 176]. There is no
total ordering between memory- and operation-based granularities. The relative
utility to an attacker depends on the program under attack.

Channel Capacity. The channel capacity is a measure of the magnitude of
the leakage per unit of time and incorporates the channel bandwidth and error
rate (cf. Shannon’s information theory [183]). While not a perfect quantitative
comparison for a practical attack, it is a good qualitative measure of the power
of a leakage source. For this reason, characterizing the covert channel capacity
is common practice in microarchitectural research as part of the discovery of a
new leakage source (e.g., [77, 128, 144, 152, 161, 231]).

Comparison. Table 3.1 summarizes the most significant sources of microar-
chitectural timing leakage at the time of writing, and how they fare on the
metrics outlined before. We focus on Intel processors, omitting some recent
works that target hardware components only present in products by other
vendors [60, 122, 214]. For each leakage source, we include the fastest covert-
channel implementation in the literature, if one exists. The covert channel



26 CACHE SIDE-CHANNEL ATTACKS

Table 3.1: Microarchitectural side-channel attacks. Those that are based on
core-shared cache resources are highlighted.

Microarchitectural
Component

Cross
Core

Full
Visibility

No Shared
Memory

Spatial
Granularity

Channel
Capacity

Cache Bank: Contention [243] ✗ ✓ ✓ <line / /
4K-Aliasing [140, 191, 253] ✗ ✓ ✓ <line 8.9 Mbps [253]
Translation Lookaside Buffer [71] ✗ ✓ ✓ page 11 Mbps [197]
Branch Prediction (BP) [53, 55] ✗ ✓ ✓ BP set 0.8 Mbps [54]
Execution Ports [6, 23] ✗ ✓ ✓ port 1.2 Mbps [195]
CPU Frontend [161, 195] ✗ ✓ ✓ various 1.6 Mbps [195]
Variable-Latency Instr. [176] ✗ ✗ ✓ instr. / /
Hardware Prefetcher [184] ✓ ✗a ✗b line 0.3 Mbps [184]
DRAM Row Buffer [152] ✓ ✗ ✓ row 2 Mbps [152]
Slice Interconnect [45, 144, 220] ✓ ✗ ✓ slice 4.1 Mbps [144]
PCIe Contention [193] ✓ ✓ ✓ none / /
Cache Status [81, 241] ✓ ✓ ✗ line 13.9 Mbps [171]
Cache Coherence [44, 202, 239] ✓ ✓ ✗ line 6.6 Mbps [87]
Cache Replacement [31, 231] ✓ ✗a ✓ set 4 Mbpsc [231]
Cache Contention [128, 143, 150] ✓ ✓ ✓ set 3.5 Mpbs [156]

a Full visibility requires complementary mechanism (e.g., cache status or contention)
b Existing works use the cache status leakage source for extraction
c Leakage rate reported for L1 cache (not LLC) and with shared memory

bandwidth is expected to increase with the degree of sharing between attacker
and victim (e.g., same-core execution or shared memory).

3.1.5 Focus of this Dissertation

As revealed by Table 3.1, the cache hierarchy is an attractive and versatile
target for side-channel attacks. In this thesis, our main focus lies on attacks
and defenses for the last-level cache (LLC) and the coherence directory (CD).

Rationale. First, the LLC (or CD) is shared across cores, obviating the need
for an attacker to co-locate with the victim on the same CPU core. Second, the
LLC (or CD) has a large number of sets, resulting in a high spatial resolution.
Third, attacks on the LLC provide full visibility, which is a property that other
fine-grained cross-core leakage sources do not provide unless they additionally
manipulate the cache hierarchy. Fourth, the cache hierarchy is critical for
performance, so modifications to the cache hierarchy itself, or to the use of it
by software, need to take this fact into account. Fifth, the cache hierarchy is
a core component in emerging computing contexts, as PCIe accelerators (for
heterogeneous computing) get direct access to it. Sixth, novel cache topologies
feature several undocumented features [237]. Finally, capabilities to manipulate
the cache hierarchy are an important building block for other important classes
of microarchitectural attacks (cf. Section 3.2.5).



CACHE ATTACKS 27

3.2 Cache Attacks

3.2.1 Cache Attack Techniques

The cache hierarchy is a complex hardware component that stores both program
data and operational metadata. All cache-timing attacks share the same
fundamental property: the time it takes to retrieve a piece of memory depends
on the state of the cache, i.e., which lines are cached, and in which level(s). Still,
there are several different leakage mechanisms through which a difference in a
victim’s memory accesses may lead to an attacker-observable time difference.
Note that co-located attackers, i.e., those that share the computation platform
with their victim, are not limited to measuring the execution time of the victim.
Indeed, they can directly interact with the cache state through memory accesses
and measure how long their own actions take [150], resulting in attack techniques
that are considerably more powerful. We now classify the main sources of leakage
in modern cache hierarchies and summarize them in Figure 3.1.

Cache Collisions. Cache collision attacks exploit that the execution time of a
victim routine is correlated with the number of cache misses it experiences. By
measuring the execution time of the victim routine, these attacks essentially
obtain a noisy estimate of the number of cache collisions or, equivalently, the
number of different cache lines that are touched during a particular execution.
Then, the targeted secret information is extracted by statistically aggregating
information on a large number of response times and correlating those with the
inputs of the algorithm. Cache collision attacks do not fundamentally require
any local cache preparation, so they can be mounted remotely [21]. A drawback
is that the information obtained from a single execution is very coarse, both
in space and in time, limiting the scope of cache collision attacks to particular
implementations. A notorious class of algorithms that leaks through cache
collisions are table-based implementations of block ciphers [21].

Cache Status. Cache status leakage reveals whether a specific cache line is
used by a victim program. If its access latency for the attacker is low, the line
was brought into the cache by some other process. The most straightforward
implementation of cache status leakage is the Flush+Reload [81, 241]
technique. First, the attacker prepares the cache state by ensuring that the
cache line in question is removed from the cache. Then, at a later point in time,
she measures whether its cache status has changed. If it has, another process
has used this cache line.



28 CACHE SIDE-CHANNEL ATTACKS

Variations of the Flush+Reload attack have surfaced with slightly different
properties. Evict+Reload [78] replaces the cache flushing with eviction for
contexts where cache flushing primitives are not exposed to the attacker (e.g.,
on Arm platforms [121]). The Flush+Flush [77] technique integrates the
measurement and preparation steps of the attack, as the execution time of the
flush instruction depends on the caching status of a cache line.

Cache Contention. Memory accesses by a process also affect the cache status
of other cache lines due to their competition for shared cache resources. Attacks
exploiting this source of leakage are referred to as cache contention or cache
conflict attacks. These attacks implement the Prime+Probe [101, 128, 142,
143, 237, 250] technique, where an attacker exhausts a full cache set of interest
with her own lines, and later measures the access times of these lines. In this
manner, she determines whether any of these lines was evicted by competing
memory accesses by another process. To mount a Prime+Probe attack, an
attacker must first obtain a set of memory addresses that, through address
translation, the slicing function, and the set indexing function, map to the same
cache set. Such a collection of addresses is referred to as an eviction set, and
we will discuss how to construct it in Section 3.2.3. Note that cache contention
leakage pertains to the cache itself, as well as its directory [237].

Typically, the attacker measures cache contention through timing measurements
of accesses to her own lines. There are two main exceptions. First, on Intel
processors with TSX (cf. Section 2.2.4), an attacker may implement the Prime+
Abort [48] technique. Instead of using a timing measurement, this technique
establishes a hardware transaction that is aborted in case contention occurs.
Second, an attacker capable of measuring the execution time of the relevant
victim code can mount an Evict+Time [143] attack. This technique infers
contention by exhausting specific cache sets and correlating those with the
victim’s execution time.

Cache Occupancy. A particular case of leakage through cache contention is
cache occupancy [134, 185, 186], where the object of contention is the cache as
a whole. A cache occupancy measurement consists of measuring the time it
takes an attacker to traverse a cache-sized buffer. As such, it does not require
the construction of eviction sets, nor does it burden the attacker with finding
the cache sets through which the victim is leaking. However, it sacrifices the
temporal and spatial granularity of the channel.

Cache Replacement. Not only the data that is cached at a given point in time
may encode memory access patterns, but also the metadata that is stored to



CACHE ATTACKS 29

Figure 3.1: Cache attack techniques. Each technique (i.e., cache collision, status,
contention, occupancy, replacement and coherence) comprises a preparation
stage and a measurement stage. Typically, a timing measurement is used to
distinguish between cases A and B.

make caching as efficient as possible. In particular, memory accesses influence
the cache replacement policy, which may be exposed to an attacker through
the sequence of future cache evictions [31, 109, 231]. Attacks targeting cache
replacement leakage require intricate knowledge of the replacement policy being
used. Additionally, as the cache replacement state is stored and acted on at
the cache-set level, it requires the construction of eviction sets to influence and
observe it, similar to cache contention attacks.

Cache Coherence. Another piece of metadata affected by memory accesses is
the coherence state associated with a given cache line. The coherence state of a
cache line may affect its access latency [239]. Most techniques exposing cache
coherence metadata can only detect deliberate changes to the coherence state,
e.g., writes. This limits their applicability to covert channels [44, 202, 239].
One exception is the Prefetch+Prefetch [87] attack on Intel processors.
By using the PREFETCHW instruction to mark a cache line as "modified", future
reads of this cache line by other processes can be detected, as those change the
coherence state to "shared". All cache coherence attacks require shared memory,
which is a drawback they share with cache status attacks.



30 CACHE SIDE-CHANNEL ATTACKS

3.2.2 Cross-Core Cache Attacks

Cross-Core Visibility. To satisfy the full visibility property from Section 3.1.4
in a cross-core attack, an attacker needs to be able to evict the target data
from the victim’s core-private caches. Otherwise, the private caches act as a
filter for future memory accesses by the victim. For Flush-based attacks, this
visibility is obtained automatically; the flush instruction invalidates a cache
line in all cache levels that are kept coherent, i.e., across cores [241] and even
across sockets [100]. For attacks that use eviction or contention, an attacker can
achieve this through back-invalidation if the last-level cache is inclusive [128]. If
the LLC is not inclusive but comes with an inclusive coherence directory (CD)
(cf. Section 2.2.2), full visibility can be regained by targeting that component
instead [237].

Shared Memory. A foundational limitation of cache status and cache coherence
leakage is their structural dependence on shared memory with the victim.
That is, the physical page that contains the cache line of interest needs to
be mapped in the virtual address space of both the attacker and the victim.
Cache replacement leakage does not strictly require shared memory, but the
side-channel signal is much stronger if memory is shared [31, 231]. In the past,
shared (read-only) memory with libraries like OpenSSL [81] could readily be
obtained. Memory deduplication features (in several operating systems [10,
25]) produce shared mappings for virtual pages that have identical contents.
However, such features are actively discouraged in multi-tenant scenarios [218],
and obtaining shared mappings for arbitrary pages is not possible in several
contexts (e.g., person-in-the-browser, cf. Section 3.1.2).

Rapid Measurements. The temporal precision of a cache attack technique
captures how accurately an attacker can attribute a victim’s memory access
to a specific point in time. It is determined by the rate at which cache state
measurements can be performed. This rate is often limited in practice. First,
many cache attack techniques suffer from the observer effect [156, 240, 241], i.e.,
the act of measuring the cache state perturbs the cache state itself. Therefore,
the state change produced by a measurement needs to be undone before it
can be repeated. Second, even if the measurement is repeatable, the speed of
a measurement depends on how many memory accesses it encompasses. We
refer to a cache attack technique as providing rapid measurements when its
measurements can be repeated and are very short (i.e., no more than a few
hundred CPU cycles). Our own Prime+Scope technique [156] achieves the
highest temporal precision to date, i.e., about 70 CPU cycles.



CACHE ATTACKS 31

Table 3.2: Cross-core cache attack comparison.

Attack
Technique

Mechanism Prerequisites

Leakage
Source

Fine
Grained

Rapid
Measure

No Shared
Memory

ISA
Agnostic

Flush+Reload [241] status line✓ ✗ ✗ ✗
Flush+Flush [77] status line✓ ✓ ✗ ✗
Evict+Reload [78] status line✓ ✗ ✗ ✓
Reload+Refresh [31] replacement line✓ ✗ ✗ ✗
Prefetch+Prefetch [87] coherence line✓ ✓ ✗ ✗

Cache Occupancy [186] occupancy none✗ ✗ ✓ ✓
Prime+Probe [101, 128] contention set✓ ✗ ✓ ✓
Prime+Abort [48] contention set✓ ✓ ✓ ✗
Evict+Time [143] contention set✓ ✗ ✓ ✗
Prime+Scope [156] contention set✓ ✓ ✓ ✓

Comparison of Techniques. Table 3.2 compares the existing cross-core cache
attack techniques. Some attacks have specific requirements on the system
configuration (e.g., shared memory between attacker and victim) or on parts of
the ISA being exposed to the attacker (e.g., the flush and prefetch instructions,
or Intel TSX). For an attack to have fine-grained spatial and temporal precision
in the absence of shared memory, it requires the up-front construction of eviction
sets, which is a topic we turn to next.

3.2.3 Routines for Constructing Eviction Sets

Motivation. The eviction set problem was first introduced and solved to
mount cross-core Prime+Probe attacks [101, 128]. However, finding addresses
that map to the same LLC set and slice is also a necessary prerequisite for
the Evict+Reload [78], Evict+Time [143], Reload+Refresh [31], and
Prime+Abort [48] techniques.

06121721

Small page (4 KiB)

Huge page (2 MiB)

Determine LLC setDetermine LLC slice

page offset bits

Figure 3.2: LLC set and slice index bits (Intel Xeon Platinum 8280).



32 CACHE SIDE-CHANNEL ATTACKS

Search Problem. Two aspects of modern computing systems complicate the
construction of LLC eviction sets. The first challenge is that the LLC is
physically indexed, while unprivileged processes interact with virtual addresses.
The only address bits for which the knowledge is preserved across address
translation are the page offset bits (cf. Figure 3.2). The second challenge is that
LLCs are organized in slices. The processor may use an undocumented and
processor-specific slice indexing function, incorporating many of the physical
address bits, not just the least significant bits of the address. Both challenges
imply that it is rarely possible to statically, i.e., without information gathered at
runtime, determine whether two addresses are congruent. Therefore, researchers
have developed routines to find eviction sets dynamically, i.e., informed by cache
hit and miss behavior during the execution of the attacker process.

Reduction Methods. Early methods are tailored to inclusive LLCs and rely
on huge pages [101, 128] or reverse engineering the slicing function [96, 102, 135,
242]. Oren et al. [142] are the first to construct eviction sets from the browser,
without huge pages. Yan et al. [238] find congruent addresses for the coherence
directory of non-inclusive Intel LLC. Islam et al. [104] learn additional physical
address bits through observing false dependencies. All mentioned procedures
have in common that they start from a large collection of addresses, which is
a superset of an eviction set with high probability. Then, they conditionally
remove a single element from this superset, depending on whether the eviction
persists after it is removed. The runtime complexity of this routine is quadratic
in the size of the initial superset. Other researchers [189, 217] propose to
conditionally remove groups of addresses, resulting in a linear-time algorithm.

Expansion Methods. In our research, we developed an even more powerful
strategy to construct eviction sets (cf. Chapter 6). It starts from an empty
set and gradually adds addresses that demonstrate congruence in the LLC (or
CD). The strategy applies to inclusive and non-inclusive Intel processors, works
without huge pages, and is oblivious to the slice-index mapping. It is two orders
of magnitude faster than the previous state of the art. Such a significant speedup
reduces the runtime of the overall attack and enhances its stealth. Indeed, it
may be necessary to construct eviction sets for a large number of cache sets and
then isolate the cache sets that carry the secret-dependent signal [128, 136].

3.2.4 Practical Considerations

Reverse Engineering. CPU microarchitectures are opaque, as silicon vendors
are not incentivized to expose any details beyond the specification of the



CACHE ATTACKS 33

ISA. However, these details are necessary in order to validate, optimize and
characterize side-channel leakage. Reverse engineering is, therefore, an effortful
but important part of microarchitectural research. In the latest years, significant
progress has been made in uncovering undocumented microarchitectural
behavior. Some recent works focus specifically on modern cache hierachies [155,
156, 237] and their replacement policies [1, 31, 216]. Reverse engineering the
microarchitectural properties of specific instructions may lead to optimizations
of existing leakage channels (e.g., [77, 86]) or the discovery of undocumented
cache fill policies [155]. Some implementation choices seem to apply generally
across the industry (e.g., speculative execution [111]), while others are specific
to CPU vendors [73, 121] or processor generations [237, 243].

Automation. To accelerate future developments in the field, automation may
assist the microarchitectural security researcher. Already today, some degree of
automation helps to find leakage in binaries to prototype attacks [78, 95, 179], or
assists in the attack development process itself [51]. Automation may also help
to find new sources of leakage [95, 225], and machine-learning techniques such as
reinforcement learning may help to synthesize improved attack patterns [131].

Performance Degradation. As an alternative to increasing the time precision
of the cache attack technique, the victim application can sometimes be slowed
down [5, 7] or frequently interrupted [81, 139] instead. However, these techniques
may have non-general system requirements (e.g., shared memory, specific OS
scheduling policies, or elevated privileges) or may suffer from the absence of
stealth because they significantly affect the victim’s execution time.

Sources of Noise. In microarchitectural side-channel attacks, there are three
main sources of noise, i.e., activity on the system that modulates CPU resources
but that is not of interest to the attacker. First, noise may be produced by the
attacker program itself, as it also executes on the system and hence affects the
microarchitectural context. Second, some processor features, like speculative
execution [111] or hardware prefetchers [184, 221] can generate spurious memory
accesses, i.e., accesses that do not occur as part of the intended control flow
of the attacker and victim programs. Third, there may be noise from other
processes or the operating system.



34 CACHE SIDE-CHANNEL ATTACKS

3.2.5 Relation to Other Microarchitectural Attacks

In the last decade, two additional and important classes of software-based
microarchitectural attacks have been discovered. While they do not constitute
the focus of this thesis, advances in these attacks are strongly correlated with
an increased understanding of the cache hierarchy and the techniques that can
be used to manipulate it.

Transient Execution Attacks. Publicly disclosed in 2018, transient execution
attacks [111, 124] are an emerging class of microarchitectural attacks. These
attacks exploit the fact that, on a processor with out-of-order [124] or
speculative [111] execution, instructions may be executed despite them not being
part of the architecturally specified control flow. These instructions, referred
to as transient instructions, are never architecturally committed. However,
during their execution, they affect the microarchitectural context, which may
be exposed using the leakage mechanisms covered in this chapter.

The cache hierarchy plays an integral role in the existing body of transient
execution attacks for two main reasons. First, for most published attacks [66,
111, 124, 159, 160, 173, 174, 206, 207, 212], the cache hierarchy is used to
establish a covert channel to exfiltrate the information from the transient
domain. Second, these attacks often selectively remove data from the cache
to ensure that optimal conditions are obtained for the processor to execute
instructions transiently, which may require the construction of eviction sets.

Rowhammer. The main memory technology used in present-day computing
systems is predominantly Dynamic Random Access Memory (DRAM). It stores
the memory contents electrically as a capacitive charge. Over time, this
charge leaks away automatically, requiring a so-called refresh to preserve the
encoded value. In 2014, it was observed that this degenerative process may
be adversarially accelerated to occur within a refresh interval, through a large
number of DRAM activations to neighboring rows [108]. Such a capability was
quickly shown to have severe security implications [180], in different execution
contexts [76, 210], and despite recent mitigations by DRAM vendors [58, 113].

Knowledge of the cache hierarchy internals is a crucial prerequisite for Rowham-
mer attacks, especially when considering restricted execution contexts [76, 164],
since the cache has to be bypassed to successfully trigger DRAM activations.



MY CONTRIBUTIONS 35

3.3 My Contributions

Contribution 1: Optimize Cache Contention Attacks

Context. In this chapter, leakage through cache contention was identified
as an important source of microarchitectural leakage due to its full visibility
across cores, fine spatial granularity, and very limited assumptions on attacker
capabilities. However, the time precision of Prime+Probe is structurally
limited by its working principle; each probing measurement accesses as many
cache lines as the associativity of the microarchitectural element, i.e., more than
ten ways for LLCs or CDs on modern Intel CPUs.

Research Outcomes. We developed the Prime+Scope technique [156] to
optimize leakage through cache contention. Its cache measurement is repeatable,
i.e., it can occur in a back-to-back fashion without interleaving a cache
preparation step; and optimally short, i.e., it measures just one access to
the L1 data cache. Because of this, Prime+Scope measurements can fire every
70 cycles (25 nanoseconds), far out of reach for existing techniques. Prime+
Scope is generally applicable like Prime+Probe, works on LLCs and CDs,
and applies to at least a decade of Intel CPUs. We confirmed its power with the
fastest cross-core cache contention covert channel to date (3.5 Mbps capacity),
an improved attack on AES T-tables, and a simple and portable eviction set
construction procedure that outperforms previous techniques by 100-600x.

Enablers. To wield Prime+Scope on inclusive caches, we developed an
automated gray-box search methodology. For non-inclusive caches, we discovered
a novel eviction primitive for the coherence directory. During our research, we
also developed portable routines to construct eviction sets in mere milliseconds.
We open-sourced these artifacts to foster future research.

Publication. My CCS 2021 paper on this topic [156], entitled "Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention Attacks",
is included as Chapter 6 in this thesis. I am the principal author of this work.



36 CACHE SIDE-CHANNEL ATTACKS

Contribution 2: Explore Emerging Computing Contexts

Context. High-end computing environments, including those in multi-tenant
clouds, are becoming increasingly heterogeneous through the deployment of
domain-specific hardware accelerators (e.g., NICs, FPGAs, and GPUs). These
accelerators interface directly with the processor’s last-level cache to minimize
the communication overhead with the CPU.

Research Outcomes. New trends in computing bring forth new threat models.
In our Double Trouble work [155], we examined combined cache attacks, which
arise when traditional co-tenancy is complemented with control over accelerators
(such as FPGAs). These accelerators access the LLC directly [92, 99] but
are severely constrained in their influence on the cache state. Our study
showed that these constraints, despite being perceived as limitations in other
threat models [116, 227], are actually beneficial to a combined attacker. Our
observations challenge common assumptions in the field, such as the minimal
size for eviction sets, the feasibility of cross-socket Evict+Reload attacks,
and the accuracy of amplitude-modulated cache covert channels. We built a
compact and extensible FPGA hardware accelerator to demonstrate our findings
and used it to further shatter speed records for eviction set construction.

Enablers. To arrive at our results, we conducted a thorough FPGA-assisted
reverse-engineering effort. This process revealed previously undocumented
properties of Intel DDIO technology, such as an additional region of independent
interest for security (e.g., [116, 196, 227]) and performance (e.g., [56, 57])
research. In addition, we uncovered previously unknown details about non-
inclusive caches that contradict and complement those of prior work [237, 238]
and allow for more efficient attacks. Finally, to reduce the friction for other
researchers to start working on this topic, which has quite some barriers to
entry, we developed an easy-to-use API for software to use the FPGA hardware
accelerator. We also open-sourced our software and hardware implementations.

Publication. My USENIX Security 2022 paper on this topic [155], entitled
"Double Trouble: Combined Heterogeneous Attacks on Non-inclusive Cache
Hierarchies", is included as Chapter 7 in this thesis. I am a main author
together with Furkan Turan, who developed the FPGA implementation.



CONCLUSION 37

3.4 Conclusion

This chapter exposed microarchitectural side-channel attacks, and cache attacks
in particular, as a threat to the security of modern multi-tenant computing
systems. Cache attacks were argued to have high spatial and temporal precision,
to be widely shared across computing contexts, and to concern one of the most
performance-critical hardware components. We contributed Prime+Scope, a
novel state-of-the-art cache attack technique with unprecedented time precision.
Observing the trend of increasing complexity and heterogeneity in modern
computing systems, we comprehensively studied the implications of sharing the
cache hierarchy with potentially malicious accelerators.





Chapter 4

Defenses Against Cache
Side-Channel Attacks

This chapter covers the state of the art in defenses against microarchitectural
timing attacks, with a focus on defenses against cache side-channel attacks.
Again, our emphasis lies on countermeasures that have received significant
academic attention in recent years. For a complete survey, we refer to existing
works (e.g., [61, 129, 192]).

Metrics for Countermeasures. Mitigations against microarchitectural timing
attacks may differ in the security properties they provide. However, this is
not the only basis on which they should be compared. A key consideration is
how the mitigation affects, both directly and indirectly, the performance of the
microarchitectural component or the system at large. For instance, flushing a
cache upon each context switch is time-consuming, representing a direct cost,
but also incurs the indirect cost of resuming execution with an empty cache.

Countermeasures also benefit from being customizable, i.e., whether they can
be tweaked for different applications or security guarantees. Another essential
factor is the invasiveness of the countermeasure in software or hardware,
and the complexity and scale of its non-recurring engineering (NRE) costs.
Another property that determines the adoption rate is the degree of manual
effort for the software developer, whether or not it requires compiler or
operating system changes, and whether the mitigation transparently applies to
existing (unmodified) application software. A final consideration is that if the
countermeasure disables existing interfaces, it also affects benign uses of such

39



40 DEFENSES AGAINST CACHE SIDE-CHANNEL ATTACKS

interfaces, which may be undesirable or impossible to enforce because of, e.g.,
service-level agreements (SLAs).

4.1 Countermeasure Strategies

Victim Side
Channel Attacker

3 Block TX 4 Block RX 5 Detect

1 Remove Channel

2 Reduce Channel SNR

Figure 4.1: Strategies to defend against cache timing attacks.

In a side-channel attack, a victim can be considered to unwillingly encode (i.e.,
transmit) information on an incidental communication channel, which is then
decoded by an attacker on the receiving end. Following such a representation,
Figure 4.1 indicates the five main anchor points for defenses.

The first, and conceptually the simplest, countermeasure is to remove the
existence of the channel altogether ( 1 ). In many cases, this boils down to
disabling a performance-enhancing feature, or partitioning it so it is no longer
shared. The second strategy is to preserve the channel but severely reduce the
quality of the information that can be transmitted on it ( 2 ). The third strategy
is to protect programs from transmitting secrets ( 3 ), i.e., from encoding them
into the microarchitectural context. The fourth strategy focuses on the receiving
end of the channel, trying to preclude information from being read out of the
microarchitectural context ( 4 ). The fifth strategy is to attempt to detect when
an attacker is performing a microarchitectural side-channel attack ( 5 ).

In the remainder of this section, we elaborate on all five defense strategies and
indicate their strengths and pitfalls based on lessons learned in recent research.

4.1.1 Remove the Channel

To eliminate side-channel leakage stemming from the shared usage of a
microarchitectural component (strategy 1 ), three main approaches exist that,
at least in theory, completely remove the leakage.

Stop Sharing. The first approach is to disable the shared use of the
performance-enhancing feature. Examples of this approach include disabling



COUNTERMEASURE STRATEGIES 41

page sharing (e.g., through memory deduplication). This eliminates all channels
that exist because of the sharing (e.g., cache status and cache coherence leakage,
cf. Table 3.2). A similar consideration holds for Simultaneous Multi-Threading
(cf. Section 2.1.2), whose existence enables several high-bandwidth covert
channels in the CPU pipeline [195], as well as the L1 caches [150]. Naturally,
disabling hardware optimizations may come with severe performance penalties.

Temporal Multiplexing. The second strategy is temporal multiplexing, i.e., to
maintain the shared usage of the component by multiple security domains, but
not simultaneously. In this manner, the channel disappears during the exclusive
access of the component, leaving only leakage through the state preserved
across the transition. Implementations of state destruction across transitions
are periodic flushes [143] of time-multiplexed private caches [251]. Note that
temporal partitioning cannot be applied to inherently concurrent hardware
resources, such as the last-level cache [61].

Spatial Multiplexing. The third strategy is spatial multiplexing, i.e., to
partition the shared component between security domains, giving each their own
exclusive share [145]. For caches, their typical two-dimensional set-associative
structure permits two straightforward high-level spatial partitioning strategies:
partitioning along the sets (e.g., [43, 47]) or along the ways (e.g., [15, 49, 109,
126, 254]). Another strategy is to lock lines in the cache to prevent their
eviction by other processes [107, 224]. Spatial partitioning has the drawback
of flexibility, i.e., rapid on-the-fly claiming and relinquishing of resources is
hard. Under-utilization of the cache at any point in time corresponds to a
performance penalty. Additionally, it may be hard to scale spatial partitioning
to many domains.

Caveats. Disabling or multiplexing shared hardware components has the
advantage of providing clear security guarantees. However, both temporal
and spatial partitioning come with caveats revealed by recent work. Spatial
partitioning needs to be implemented rigorously, ensuring that all software,
including system software, is assigned to a partition. No single piece of software,
not even a privileged one, should have access to all partitions. Otherwise, it
can be used as a confused deputy [211]. In the context of caches, it needs to be
ensured that all its leakage sources are partitioned, including the cache metadata.
For instance, cache replacement information should not persist across temporal
boundaries after flushing [215], nor leak across spatial boundaries [109].



42 DEFENSES AGAINST CACHE SIDE-CHANNEL ATTACKS

4.1.2 Decrease the Signal-to-Noise Ratio of the Channel

The second main strategy to mitigate cache side-channel attacks is to allow a
channel’s existence but severely degrade its signal-to-noise ratio (strategy 2 ).
Therefore, it reduces the amount of information that can be obtained through
shared usage of the component while maintaining the benefits of sharing.

Inject Additional Accesses. Some works propose to actively inject noise into
the system [32, 118, 246], i.e., generate activity that is uncorrelated or anti-
correlated [38] to the signal of interest. Preloading sensitive data into the
cache [81] has been proposed to obfuscate subsequent secret-dependent accesses.
With hardware transactional memory (cf. Intel TSX, Section 2.2.4), it is possible
to additionally abort and restart the execution of a piece of code if one of the
victim lines is evicted from the cache [74].

Remove Spatial Information. The cache contention leakage channel would be
severely degraded, both in its temporal and spatial granularity, if all caches were
to be implemented in a fully-associative manner, with a random replacement
policy. Indeed, as such caches do not exhibit any evictions that correlate with
the address of newly inserted cache lines, they only (at best) reveal the victim’s
working set size [46, 186]. Unfortunately, the power consumption of such a
cache is prohibitively high, so it is not a viable solution for most real systems.

Preclude Full Visibility. Another approach is to remove the full visibility of
the channel (cf. Section 3.1.4). With only partial visibility, the attacker needs
to rely on activity on the victim core to evict the cache lines of interest, which
degrades the time precision and weakens the side-channel signal. For the LLC
and CD, full visibility can be disabled by preventing the inclusion property from
invalidating lines in the lower-level caches. In this context, researchers propose
a novel replacement policy across the cache hierarchy to avoid invalidations
due to inclusion [235], or modify the coherence directory to provide it with
a per-core private directory that avoids attacker-controllable evictions [238].
Some commercially available processors feature a mechanism that avoids LLC
evictions if they would produce inclusion victims [73].

Cache Randomization. A new and promising line of work to defend against
cache-side channel attacks is cache randomization. The idea is to make it
impossible for an attacker to detect cache set contention, prompting them to
resort to a cache occupancy attack, losing all spatial information. If successful,



COUNTERMEASURE STRATEGIES 43

it can effectively emulate the security properties of a fully associative cache
without incurring the prohibitive overheads associated with them. Initial cache
randomization proposals [127, 224] target the L1 cache and use an indirection
table to implement a randomized memory-to-cache mapping. However, they
scale poorly with cache size, making them prohibitively expensive for large
caches and therefore unfit to be deployed for last-level caches.

The last-level cache is the most important cache to protect, as it is shared across
cores. At the same time, it has the highest access latency, so the sensitivity of
its performance to slight tweaks is much lower than for the other cache levels.
This presents an opportunity exploited by recent designs. These designs use
low-latency cryptographic mechanisms to compute a pseudorandom address-to-
index mapping on the fly, in hardware, for every LLC memory access [157, 158,
201, 228]. Most other parts of the memory hierarchy actually do not need to be
changed. We revisit LLC cache randomization in more detail in Section 4.2.

Caveats. Injecting unnecessary memory accesses does not remove the presence
of the initial side-channel signal. Therefore, the signal may be uncovered with
additional measurements [38]. Preloading sensitive data may not block all
sources of leakage (e.g., cache replacement metadata) or be circumvented by
rapid cache manipulation strategies [29]. Eliminating full visibility may not be
sufficient to block all practical attacks [73]. For cache randomization, there may
exist advanced techniques to recover spatial information on memory accesses
and increase the signal-to-noise ratio again (cf. Section 4.3). There may also
exist other side channels that reveal cache set congruence [198].

4.1.3 Block the Encoding of the Secret

The third high-level strategy to defend against side-channel attacks is to stop
programs from unintentionally encoding their secrets into the microarchitectural
context (strategy 3 ). Most proposals adhering to this strategy are centered
around the notion of constant-time programming.

Constant-Time Programming. A program is said to satisfy the constant-time
property if it does not branch on secrets, does not perform secret-dependent
memory accesses, and does not allow secrets to act as operands to variable-
latency instructions [21, 105, 110]. Producing software that satisfies this property
requires considerable expertise and undermines the abstractions provided by
the ISA. Therefore, several machine-assisted techniques have been developed
to analyze programs for leakage [16, 105], using methods such as dynamic



44 DEFENSES AGAINST CACHE SIDE-CHANNEL ATTACKS

instrumentation (e.g., [117, 222]), formal analysis (e.g., [8, 50]), or statistical
techniques (e.g., [162]). Verifying the constant-time property for a piece of code
may occur at the level of compiled and optimized (LLVM) assembly code [8],
at the binary level [229], or experimentally for the execution of a given binary
on a given platform [162]. Some tools are able to eliminate classes of leakage
automatically (e.g., [41, 230]).

Discussion. An advantage of the constant-time programming paradigm is that,
when fully abided by, it blocks the transmission on many known channels, more
so than ad-hoc countermeasures. However, while burdening the developer to
adhere to constant-time programming practices is a reasonable assumption for
highly sensitive code, it is unreasonable to expect such care and effort to become
part of general software engineering practices. Many platforms now provide
constant-time hardware support for core cryptographic primitives [79, 80].

Caveats. The constant-time property is not necessarily portable across
platforms due to operand-dependent instruction timings [11, 41]. Portability
issues can be avoided by exposing the constant-time property of an instruction
as part of the ISA [244]. Special care should be taken to preserve constant-time
properties across the compilation chain [17, 187]. As constant-time programming
protects potential victims from unintentionally transmitting their secrets through
the modulation of microarchitectural resources, it does not protect against covert
channels, where secrets are intentionally transmitted.

4.1.4 Block the Decoding of the Secret

The fourth high-level strategy to defend against timing side-channel attacks is
to thwart the readout of secret information from the microarchitectural context
(strategy 4 ). This strategy mainly manifests itself as restrictions on the timing
sources present in the system.

Restricting Timers. Timing sources may be completely virtualized, detaching
them from the actual passage of time (e.g., [14, 119]). To defend against remote
attackers, servers can schedule their response to be transmitted only at discrete
times (e.g., [115]). A popular academic proposal [114, 133, 213] is to drastically
reduce the resolution of available timers (e.g., to 100 µs), since the decoding of
microarchitectural side channels requires timing precisions in the order of 10 to
100 nanoseconds. Today, all major browsers have adopted some form of timer



COUNTERMEASURE STRATEGIES 45

granularity restrictions [67, 138, 219, 226], as it is a straightforward and broad
countermeasure against CPU timing attacks.

Caveats. Virtualizing time may incur severe overheads [119] and affect
legitimate uses of time, e.g., in interacting with other systems [61]. For
environments without fine-grained timers, part of the lost precision may be
recovered by fabricating new timers [72, 167, 175]. If the attacker thread is
networked, it may also communicate with a timing server, resulting in a timer
granularity that depends on the jitter in the network latency [178]. Additionally,
the time difference between microarchitectural events may be amenable to
amplification (cf. [137] and Section 4.3).

4.1.5 Detect the Attack at Runtime

The fifth major defense strategy is to detect and stop attacks as they occur
(strategy 5 ). The motivating observation is that CPU timing attacks exhibit
signature behavior that allows one to distinguish them from benign applications.

On-the-fly Detection. The detection strategy is appealing, as it does not
adversely affect the performance of the processor in normal operating regimes.
Instead, the performance overhead is limited to the response upon detection of
an attack. Several works propose to leverage existing hardware performance
counters (HPCs) [4, 30, 37, 77, 85, 141, 149, 248]. Note that, on modern
platforms, system-level privileges are required to access these counters, and
only a limited number of counters may be queried simultaneously. Other
works propose to add dedicated detection hardware, e.g., to pattern-match for
recurrent contention patterns in important CPU components [36], to compare
two executions of a program with different address-to-index mappings [236], or
to detect cyclic interference between security domains [88].

Caveats. The main challenge for the adoption of on-the-fly detection is
achieving the extremely low false positive rates needed for real-world systems.
False positive rates need to be extremely low to avoid benign activity from being
flagged. Another challenge is that detection-based countermeasures are prone
to cat-and-mouse games; attacks can be modified to become less detectable
(e.g., [77]) or explicitly avoid the metric used for detection (e.g., [31]). Finally,
the action that should be undertaken upon detecting an attack is subject to a
system-dependent trade-off between usability, performance and security.



46 DEFENSES AGAINST CACHE SIDE-CHANNEL ATTACKS

Pseudorandom
mapping

R ...

o
f
f
s
e
t

i
n
d
e
x

t
a
g

P partitions

W/P
ways

W/P
ways

2
s
s
e
t
s

Figure 4.2: Randomized skewed cache.

4.2 Randomization-based Protected Caches

This section revisits cache randomization, a defense against cache attacks that
aims to severely decrease their signal-to-noise ratio at low overhead ( 2 ). We
focus on recent and state-of-the-art designs that protect the shared LLC.

Deterministic Randomization Mapping. The first generation of randomized
LLC proposals [157, 201] tweak the LLC address-to-index mapping to increase
its unpredictability without affecting the sliced, set-associative structure of the
LLC. By instantiating the set index mapping as a pseudorandom function, i.e.,
one that is random-looking but deterministic, these proposals eradicate all prior
knowledge an attacker has about LLC-congruence (cf. Section 3.2.3).

However, even if such a randomization mapping uniformly randomly distributes
cache lines among sets, its deterministic nature implies that LLC eviction sets
still exist, albeit slightly harder to construct. The proposed solution to prevent
an adversary from finding and using eviction sets is to change (or rekey) the
randomization mapping when a particular condition is satisfied, e.g., the number
of LLC accesses exceeds a predetermined threshold. Rekeying neutralizes any
eviction sets an adversary has already constructed, forcing her to start over.
However, the proposed rekeying rates significantly underestimate the potential
for speeding up eviction set construction (cf. Section 3.2.3). To maintain security
against these novel techniques, the rekeying rates of first-generation designs
would need to be increased to impractical levels [158].

Probabilistic Randomization Mapping. The second generation of randomized
LLCs [158, 228] inserts a probabilistic component into the randomized set
indexing function. In particular, the designs in this category leverage a skewed



MY CONTRIBUTIONS 47

cache architecture [181]. Each cache set is subdivided into a fixed number of
skews or partitions, where each partition is indexed by a distinct pseudorandom
function. Upon a cache line fill request, one of the partitions is randomly
selected to host the incoming line, and the cache set index is determined by
that partition’s randomization mapping. Upon a cache lookup, the mapping for
each partition is evaluated, and the original address of the matching cache lines
is compared to the requested line to assess whether there is a cache hit.

Randomized skewed caches cleverly inject entropy on every cache line fill while
keeping the resulting lookup tractable. The implied non-determinism enforces
a complete overhaul for attacks, with two main implications. First, existing
routines for eviction set construction [157, 217] do not tolerate probabilistic
conflicts. Worse, eviction sets in the traditional sense no longer exist for these
designs, as it is highly unlikely for addresses to be congruent in all partitions
simultaneously. Second, assuming an adversary does manage to find addresses
that contend in one or more partitions, the following exploitation phase is also
adversely affected by the now-probabilistic nature of cache contention.

Low-Latency Cryptography. A crucial requirement for cache randomization
is that its performance overhead is small. An essential and challenging
consideration is minimizing the latency to compute the index mapping. Some
designs propose bespoke low-latency functions [157, 158, 194] which, as we
will show in Section 4.3, risk shortcut attacks that target the randomization
mapping directly. For future-proof security properties, the cache randomization
field may draw from advances in low-latency cryptography [13, 18, 19, 24], or
develop custom but cryptographically sound functions [34, 65].

4.3 My Contributions

Deploying defenses against microarchitectural side-channel attacks incurs a
considerable cost, whether that be in performance, energy, hardware utilization,
modifications to existing software, or compatibility breaks. Therefore, defenses
must be evaluated well in advance of their deployment. In this dissertation,
two promising and influential countermeasures are evaluated and shown to be
insufficient to thwart all attacks.



48 DEFENSES AGAINST CACHE SIDE-CHANNEL ATTACKS

Contribution 3: Evaluate Cache Randomization

Context. In Section 4.2, randomized cache architectures were identified as
a promising countermeasure against cache side-channel attacks, due to their
transparency, low overhead, and considerable reduction of the quality of the
side channel. After efficient eviction set construction techniques defeated the
first generation of cache randomization designs, stronger designs were proposed
at flagship conferences (e.g., CEASER-S at ISCA, ScatterCache at USENIX
Security). Prior to our work, it was an open question whether these designs
stood up to sophisticated and previously unknown statistical attacks.

Research Outcomes. We consolidated the existing cache randomization
designs in a generic model and systematically evaluated their security. The
resulting Prime+Prune+Probe attack applies to all designs and is generic
enough [62] to affect PhantomCache [194], a different type of probabilistic
randomized cache that appeared after our analysis was completed. Orthogonally,
with a devastating shortcut attack on CEASER [157] and CEASER-S [158], we
show that the strength of the randomization function is essential to security.

Publication. My S&P 2021 paper on this topic [154], entitled "Systematic
Analysis of Randomization-based Protected Cache Architectures", is included as
Chapter 8 in this thesis. I am the principal author of this work.

Follow-up. Related to this work, I co-authored an S&P 2023 paper [65]
which proposes an innovative combination of randomization and isolation. By
orchestrating partially overlapping cache utilization profiles for different security
domains, our cache design is able to wield useful properties of isolation without
facing the problem of cache underutilization. At the same time, in addition
to the obfuscation provided by randomization, it removes the full visibility
property of cache contention; over time, cache lines become hidden from the
attacker. This not only thwarts my Prime+Prune+Probe attack [154], it
also defends against cache occupancy attacks, which were previously considered
to be out of scope for randomization-based secure caches [157, 158, 172, 228].
My main contribution to this article is the security analysis of the design.

Follow-up by the Community. Figure 4.3 shows a selection of related work that
followed up on my evaluation in the two years since its publication. Several new
designs were proposed that explicitly try to defend against the techniques I have
uncovered [40, 65, 172, 188, 199, 205]. My statistical analysis techniques were



MY CONTRIBUTIONS 49

Our
Analysis [154]

S&P ’21

CaSA [26] - MICRO ’20
BWCFI [188] - S&P ’21
Model [163] - CHES ’22

TLBcoat [190] - CHES ’23
CacheFX [62] - AsiaCCS ’23

Mirage [172] - SEC ’21
BWCFI [188] - S&P ’21

GaloisCache [40] - SEED ’21
ChameleonCache [205] - SEED ’22

SassCache [65] - S&P ’23
ClepsydraCache [199] - SEC ’23

SCARF [34]
QARTA [65] - S&P ’23

Apply

Analysis

Mitigate
Prime+Prune+Probe

TailoredCryptography

Figure 4.3: Positioning of my cache randomization research and follow-up work
(tier-1 venues in bold).

applied by Bourgeat et al. [26], Song et al. [188], Ribes-González et al. [163],
and Stolz et al. [190]. In response to my shortcut attacks exploiting the
randomization itself, novel low-latency ciphers [34, 65] were specifically developed
for randomization-based protected caches.

Contribution 4: Evaluate Timer Restrictions

Context. Restricting the granularity of available timers is a promising
countermeasure against CPU timing side-channel attacks. It does not require
hardware changes, does not constrain developers to produce constant-time code,
and does not affect the performance-enhancing behavior of microarchitectural
components. Moreover, it influences the readout phase of all types of timing
attacks, not just cache attacks. For these reasons, it has received attention
in academia [114, 133, 213] and has been deployed in all major browsers [67,
138, 219, 226]. Although basic cache attack primitives were shown without
high-precision timers, large classes of microarchitectural attacks were thought
to be mitigated, including cross-core and stateless side-channel attacks.



50 DEFENSES AGAINST CACHE SIDE-CHANNEL ATTACKS

Research Outcomes. We showed that restricted timers are an incomplete
defense against CPU timing attacks. First, we proposed new single-shot
amplifiers, i.e., pieces of code that produce a large timing difference from a single
difference in the microarchitectural context. Our most potent amplifier produces
timing differences discernable by the human eye with 99% accuracy (median
for fifteen participants with 100 observations each). Second, we developed
conversion routines to convert side-channel information from one leakage type
to another. Combining these two primitives, we proposed a generic framework
for single-shot amplification of arbitrary microarchitectural timing leaks. We
performed several case studies, e.g., the generation of cache eviction sets, both
in real-world restricted browser environments (i.e., the latest version of Chrome)
and natively using timers with precisions ranging from microseconds to seconds.

Publication. My AsiaCCS 2023 paper on this topic [153], entitled "ShowTime:
Amplifying Arbitrary CPU Timing Side Channels", is included as Chapter 9 in
this thesis. I am the principal author of this work.

4.4 Conclusion

Eliminating microarchitectural side channels without tarnishing the performance
optimization that causes them is a challenging problem. In this chapter, we
identified and evaluated two influential and promising proposals to defend
against cache attacks. Both promise a severe reduction of the side-channel
attack potential without significantly affecting performance. With our work
on randomization-based secure caches, we showed that sophisticated statistical
attacks still apply to randomization-based secure caches and that, to maintain
security, rekeying rates should be much higher than anticipated. Additionally,
we demonstrated that cryptographic weaknesses in the randomization function
may allow an adversary to completely bypass all intended security mechanisms.
With our work on side-channel conversion and amplification, we arrived at
the conclusion that timer restrictions alone, even when implemented beyond
practical limits, provide insufficient protection against CPU timing attacks.



Chapter 5

Conclusion

At the risk of misprediction, this chapter identifies broad research trends in
microarchitectural security and potentially promising branches moving forward.

Microarchitectural Exploration. Over the years, the research community
has steadily increased its understanding of the leakage mechanisms that
plague modern microarchitectures. Going forward, we expect this trend to
continue. Novel microarchitectural features still make their way into commercial
processors [214, 247], computing architectures adapt over time [155, 237], and
research is expanding toward other processor vendors than Intel [60, 121, 214].
Even in the absence of new leakage sources, our Prime+Scope work [156]
showed that order-of-magnitude improvements are still possible even for side
channels that were thought to be well understood. Finally, one can observe
an encouraging tendency in the community toward publicly sharing research
artifacts, which democratizes academic microarchitectural research.

Complexity and Integration. The complexity and heterogeneity of computing
systems keep increasing. Learning from our examination of heterogeneous
systems [155], we foresee it to be even more challenging to defend against
such attacks in the future, as the associated performance-security trade-offs
are complicated, countermeasures are fragile, and improvements to attacks are
easy to overlook. Automated testing is desirable to characterize new channels
and avoid regressions, which becomes easier with increasing transparency. An
antidote against complexity and opacity can be found in a clean-slate approach,
for which the growing RISC-V ecosystem could act as a catalyst.

51



52 CONCLUSION

Security Specialization. As argued in Chapter 4, practically eliminating
all side channels in modern computing systems is a challenging undertaking.
Even assuming that all leakage sources are documented and characterized,
the economic incentives of CPU vendors and cloud service providers remain
firmly pointed towards increased multi-tenancy, heterogeneity, and aggressive
performance enhancements. A pragmatic solution may be on-die specialization,
where different CPU cores in the same package differ in their security-
performance design choices, similar to existing performance and efficiency
cores. This way, at least high-security processes can be holistically shielded
from most of the microarchitectural attack surface.

High-Leverage Mitigations. In the absence of holistic countermeasures, low-
overhead mitigations for the most significant side channels may still be a
promising short-term approach. Chapter 3 argued that the shared cache
hierarchy is one of the most high-leverage microarchitectural components, while
Chapter 4 established that mitigations for the LLC and CD may have reasonable
performance overheads. Combined with a strict core-based scheduling policy [42],
they may pragmatically eliminate the strongest leakage. However, additional
analysis, such as ours [154], is required to increase confidence in the security
of probabilistic mitigations, similar to how the confidence in cryptographic
primitives is established through its resilience against third-party analysis.

Physical Side Channels. Recently, microarchitectural side-channel attacks
traversed another abstraction layer, i.e., the interaction of the computing
device with the physical world. Indeed, some processor features measure
physical properties, like the instantaneous power consumption, and expose it to
unprivileged processes [123] or actuate based on them [125, 223]. In contrast
to most of the side-channel attacks described in this dissertation, the physical
leakage mechanism may directly leak the data processed by instructions. For
now, software-observable physical side-channel leakage is fairly coarse-grained,
resulting in low leakage rates. However, it would be naive to underestimate
the signal-enhancing capabilities and motivation of the research community.
Opportunities for low-overhead hardware mitigations may lie in established
defensive practices for embedded devices (e.g., masking [35, 69]).



Bibliography

[1] A. Abel and J. Reineke. “uops.info: Characterizing latency, throughput,
and port usage of instructions on intel microarchitectures”. In: ASPLOS.
2019 (p. 33).

[2] O. Aciiçmez. “Yet another microarchitectural attack: exploiting I-cache”.
In: ACM Workshop on Computer Security Architecture. 2007 (p. 23).

[3] O. Aciiçmez and J.-P. Seifert. “Cheap hardware parallelism implies cheap
security”. In: Fault Diagnosis and Tolerance in Cryptography (FDTC).
2007 (pp. 24, 25).

[4] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya.
“Performance counters to rescue: A machine learning based safeguard
against micro-architectural side-channel-attacks”. In: IACR Cryptol.
ePrint Arch. 2017/564. 2017 (p. 45).

[5] A. C. Aldaya and B. B. Brumley. “HyperDegrade: From GHz to MHz
Effective Cpu Frequencies”. In: USENIX Security Symposium. 2022
(p. 33).

[6] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri.
“Port contention for fun and profit”. In: IEEE Symposium on Security
and Privacy (S&P). 2019 (pp. 23–26).

[7] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol, and Y. Yarom.
“Amplifying Side Channels Through Performance Degradation”. In:
Annual Conference on Computer Security Applications (ACSAC). 2016
(p. 33).

[8] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir. “Verifying
Constant-Time Implementations.” In: USENIX Security Symposium.
2016 (p. 44).

53



54 BIBLIOGRAPHY

[9] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and
Y. Yarom. “Ladderleak: Breaking ECDSA With Less Than One Bit
of Nonce Leakage”. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2020 (p. 22).

[10] A. Arcangeli, I. Eidus, and C. Wright. “Increasing Memory Density by
using KSM”. In: Proceedings of the Linux Symposium. 2009 (p. 30).

[11] Arm. ARM7TDMI Technical Reference Manual r4p1 - Multiply and
multiply accumulate. https://developer.arm.com/documentation/
ddi0210/c/Instruction-Cycle-Timings/Multiply-and-multiply-
accumulate. 2001 (p. 44).

[12] D. Asonov and R. Agrawal. “Keyboard acoustic emanations”. In: IEEE
Symposium on Security and Privacy (S&P). 2004 (p. 18).

[13] R. Avanzi. “The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour
Constructions With Non-Involutory Central Rounds, and Search
Heuristics for Low-Latency S-Boxes”. In: IACR Transactions on
Symmetric Cryptology (ToSC). 2017 (p. 47).

[14] A. Aviram, S. Hu, B. Ford, and R. Gummadi. “Determinating timing
channels in compute clouds”. In: ACM Workshop on Cloud Computing
Security (CCSW). 2010 (p. 44).

[15] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf. “CURE: A Security Architecture with
CUstomizable and Resilient Enclaves”. In: USENIX Security Symposium.
2021 (p. 41).

[16] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K.
Liao, and B. Parno. “SoK: Computer-aided cryptography”. In: IEEE
Symposium on Security and Privacy (S&P). 2021 (p. 43).

[17] G. Barthe, B. Grégoire, and V. Laporte. “Secure compilation of side-
channel countermeasures: the case of cryptographic “constant-time””. In:
IEEE Computer Security Foundations (CSF). 2018 (p. 44).

[18] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim. “The SKINNY family of block ciphers and
its low-latency variant MANTIS”. In: CRYPTO. 2016 (p. 47).

[19] Y. Belkheyar, J. Daemen, C. Dobraunig, S. Ghosh, and S. Rasoolzadeh.
“BipBip: A Low-Latency Tweakable Block Cipher with Small Dimen-
sions”. In: Cryptographic Hardware and Embedded Systems (CHES). 2023
(p. 47).

[20] N. Benger, J. Van de Pol, N. P. Smart, and Y. Yarom. ““Ooh Aah... Just
a Little Bit”: A Small Amount of Side Channel can go a Long Way”. In:
Cryptographic Hardware and Embedded Systems (CHES). 2014 (p. 22).

https://developer.arm.com/documentation/ddi0210/c/Instruction-Cycle-Timings/Multiply-and-multiply-accumulate
https://developer.arm.com/documentation/ddi0210/c/Instruction-Cycle-Timings/Multiply-and-multiply-accumulate
https://developer.arm.com/documentation/ddi0210/c/Instruction-Cycle-Timings/Multiply-and-multiply-accumulate


BIBLIOGRAPHY 55

[21] D. J. Bernstein. Cache-timing attacks on AES. 2005 (pp. 22, 27, 43).
[22] D. J. Bernstein, J. Breitner, D. Genkin, L. G. Bruinderink, N. Heninger,

T. Lange, C. van Vredendaal, and Y. Yarom. “Sliding Right into Disaster:
Left-to-right Sliding Windows Leak”. In: Cryptographic Hardware and
Embedded Systems (CHES). 2017 (p. 22).

[23] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus. “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention”. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2019
(pp. 23–26).

[24] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçın. “PRINCE - A Low-Latency Block Cipher
for Pervasive Computing Applications”. In: ASIACRYPT. 2012 (p. 47).

[25] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector”. In: IEEE
Symposium on Security and Privacy (S&P). 2016 (p. 30).

[26] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan. “CaSA:
End-to-end Quantitative Security Analysis of Randomly Mapped Caches”.
In: IEEE/ACM International Symposium on Microarchitecture (MICRO).
2020 (p. 49).

[27] R. Branco and B. Lee. “Cache-related Hardware Capabilities and Their
Impact on Information Security”. In: ACM Computing Surveys (2022)
(p. 21).

[28] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi. “Software grand exposure:{SGX} cache attacks are practical”.
In: Workshop On Offensive Technologies (WOOT). 2017 (p. 23).

[29] S. Briongos, I. Bruhns, P. Malagón, T. Eisenbarth, and J. M. Moya. “Aim,
Wait, Shoot: How the CACHESNIPER Technique Improves Unprivileged
Cache Attacks”. In: IEEE European Symposium on Security and Privacy
(EuroS&P). 2021 (p. 43).

[30] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisenbarth. “Cacheshield:
Detecting Cache Attacks Through Self-observation”. In: ACM Conference
on Data and Application Security and Privacy (CODASPY). 2018 (p. 45).

[31] S. Briongos, P. Malagon, J. M. Moya, and T. Eisenbarth. “RELOAD+REFRESH:
Abusing Cache Replacement Policies to Perform Stealthy Cache Attacks”.
In: USENIX Security Symposium. 2020 (pp. 26, 29–31, 33, 45).



56 BIBLIOGRAPHY

[32] R. Brotzman, D. Zhang, M. Kandemir, and G. Tan. “Ghost Thread:
Effective User-Space Cache Side Channel Protection”. In: ACM
Conference on Data and Application Security and Privacy (CODASPY).
2021 (p. 42).

[33] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. “Flush, Gauss,
and Reload–a Cache Attack on the BLISS Lattice-based Signature
Scheme”. In: Cryptographic Hardware and Embedded Systems (CHES).
2016 (p. 22).

[34] F. Canale, T. Güneysu, G. Leander, J. Thoma, Y. Todo, and R. Ueno.
“SCARF: A Low-Latency Block Cipher for Secure Cache-Randomization”.
In: IACR Cryptol. ePrint Arch. 2022/1228. 2022 (pp. 47, 49).

[35] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. “Towards sound
approaches to counteract power-analysis attacks”. In: CRYPTO. 1999
(p. 52).

[36] J. Chen and G. Venkataramani. “CC-hunter: Uncovering covert timing
channels on shared processor hardware”. In: IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2014 (p. 45).

[37] M. Chiappetta, E. Savas, and C. Yilmaz. “Real time detection of cache-
based side-channel attacks using Hardware Performance Counters”. In:
IACR Cryptol. ePrint Arch. 2015/1034. 2015 (p. 45).

[38] D. Cock, Q. Ge, T. Murray, and G. Heiser. “The last mile: An empirical
study of timing channels on seL4”. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2014 (pp. 42, 43).

[39] S. Cohney, A. Kwong, S. Paz, D. Genkin, N. Heninger, E. Ronen, and
Y. Yarom. “Pseudorandom black swans: Cache attacks on CTR_DRBG”.
In: IEEE Symposium on Security and Privacy (S&P). 2020 (p. 22).

[40] S. Constable and T. Unterluggauer. “Seeds of SEED: A Side-Channel
Resilient Cache Skewed by a Linear Function over a Galois Field”. In:
IEEE Symposium on Secure and Private Execution Environment Design
(SEED). 2021 (pp. 48, 49).

[41] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter.
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors”. In: IEEE Symposium on Security and Privacy (S&P).
2009 (p. 44).

[42] J. Corbet. Many uses for Core scheduling. https://lwn.net/Articles/
799454/. 2019 (pp. 24, 52).

[43] V. Costan, I. Lebedev, and S. Devadas. “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation”. In: USENIX Security
Symposium. 2016 (p. 41).

https://lwn.net/Articles/799454/
https://lwn.net/Articles/799454/


BIBLIOGRAPHY 57

[44] Y. Cui, C. Yang, and X. Cheng. “Abusing Cache Line Dirty States to
Leak Information in Commercial Processors”. In: IEEE Symposium on
High Performance Computer Architecture (HPCA). 2022 (pp. 26, 29).

[45] M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and M. Yan.
“Don’t Mesh Around: Side-Channel Attacks and Mitigations on Mesh
Interconnects”. In: USENIX Security Symposium. 2022 (pp. 24, 26).

[46] G. Dessouky, T. Frassetto, and A.-R. Sadeghi. “HybCache: Hybrid
Side-Channel-Resilient Caches for Trusted Execution Environments”. In:
USENIX Security Symposium. 2020 (p. 42).

[47] G. Dessouky, A. Gruler, P. Mahmoody, A.-R. Sadeghi, and E. Stapf.
“Chunked-Cache: On-Demand and Scalable Cache Isolation for Security
Architectures”. In: Network and Distributed System Security Symposium
(NDSS). 2022 (p. 41).

[48] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. M. Tullsen. “Prime+Abort:
A Timer-Free High-Precision L3 Cache Attack using Intel TSX”. In:
USENIX Security Symposium. 2017 (pp. 28, 31).

[49] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev.
“Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side
Channel Attacks”. In: ACM Transactions on Architecture and Code
Optimization (TACO). 2012 (p. 41).

[50] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke. “Cacheaudit: A
tool for the static analysis of cache side channels”. In: ACM Transactions
on Information and System Security (TISSEC). 2015 (p. 44).

[51] C. Easdon, M. Schwarz, M. Schwarzl, and D. Gruss. “Rapid Prototyping
for Microarchitectural Attacks”. In: USENIX Security Symposium. 2022
(p. 33).

[52] D. Evtyushkin, T. Benjamin, J. Elwell, J. A. Eitel, A. Sapello, and
A. Ghosh. “Computing with time: Microarchitectural weird machines”.
In: ASPLOS. 2021 (p. 22).

[53] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR:
Attacking branch predictors to bypass ASLR”. In: IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 2016 (pp. 24–26).

[54] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Understanding
and mitigating covert channels through branch predictors”. In: ACM
Transactions on Architecture and Code Optimization (TACO). 2016
(p. 26).

[55] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev.
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor”. In: ASPLOS. 2018 (pp. 24, 26).



58 BIBLIOGRAPHY

[56] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić. “Make the Most
Out of Last Level Cache in Intel Processors”. In: EuroSys Conference.
2019 (p. 36).

[57] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić. “Reexamining
Direct Cache Access to Optimize I/O Intensive Applications for Multi-
hundred-gigabit Networks”. In: USENIX Annual Technical Conference
(ATC). 2020 (p. 36).

[58] P. Frigo, E. Vannacci, H. Hassan, V. Van Der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi. “TRRespass: Exploiting the many
sides of target row refresh”. In: IEEE Symposium on Security and Privacy
(S&P). 2020 (p. 34).

[59] K. Gandolfi, C. Mourtel, and F. Olivier. “Electromagnetic analysis:
Concrete results”. In: Cryptographic Hardware and Embedded Systems
(CHES). 2001 (p. 18).

[60] S. Gast, J. Juffinger, M. Schwarzl, G. Saileshwar, A. Kogler, S. Franza,
M. Köstl, and D. Gruss. “SQUIP: Exploiting the Scheduler Queue
Contention Side Channel”. In: IEEE Symposium on Security and Privacy
(S&P). 2023 (pp. 25, 51).

[61] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware”. In: J.
Cryptographic Engineering. 2018 (pp. 21, 39, 41, 45).

[62] D. Genkin, W. Kosasih, F. Liu, A. Trikalinou, T. Unterluggauer, and Y.
Yarom. “CacheFX: A framework for evaluating cache security”. In: ACM
SIGSAC Asia Conference on Computer and Communications Security
(AsiaCCS). 2023 (pp. 48, 49).

[63] D. Genkin, L. Valenta, and Y. Yarom. “May the fourth be with
you: A microarchitectural side channel attack on several real-world
applications of curve25519”. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS). 2017 (p. 22).

[64] B. Gierlichs, L. Batina, C. Clavier, T. Eisenbarth, A. Gouget,
H. Handschuh, T. Kasper, K. Lemke-Rust, S. Mangard, A. Moradi,
et al. “Susceptibility of eSTREAM candidates towards side channel
analysis”. In: State of the Art of Stream Ciphers Workshop. 2008 (p. 22).

[65] L. Giner, S. Steinegger, A. Purnal, M. Eichlseder, T. Unterluggauer,
S. Mangard, and D. Gruss. “Scatter and Split Securely: Defeating Cache
Contention and Occupancy Attacks”. In: IEEE Symposium on Security
and Privacy (S&P). 2023 (pp. 47–49).



BIBLIOGRAPHY 59

[66] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida.
“Speculative Probing: Hacking Blind in the Spectre Era”. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS).
2020 (p. 34).

[67] Google. Align performance API timer resolution to cross-origin isolated
capability - Chrome Platform Status. https://chromestatus.com/
feature/6497206758539264. 2021 (pp. 45, 49).

[68] Google. Product Status: Microarchitectural Data Sampling (MDS). https:
//support.google.com/faqs/answer/9330250?hl=en. 2019 (p. 24).

[69] L. Goubin and J. Patarin. “DES and differential power analysis the
“Duplication” method”. In: Cryptographic Hardware and Embedded
Systems (CHES). 1999 (p. 52).

[70] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi. “ABSynthe:
Automatic Blackbox Side-channel Synthesis on Commodity Microar-
chitectures.” In: Network and Distributed System Security Symposium
(NDSS). 2020 (p. 24).

[71] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks”.
In: USENIX Security Symposium. 2018 (pp. 24–26).

[72] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. “ASLR on the
Line: Practical Cache Attacks on the MMU”. In: Network and Distributed
System Security Symposium (NDSS). 2017 (p. 45).

[73] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth. “AutoLock: Why cache attacks on ARM are harder than
you think”. In: USENIX Security Symposium. 2017 (pp. 33, 42, 43).

[74] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa.
“Strong and Efficient Cache Side-channel Protection Using Hardware
Transactional Memory”. In: USENIX Security Symposium. 2017 (p. 42).

[75] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS).
2016 (p. 22).

[76] D. Gruss, C. Maurice, and S. Mangard. “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript”. In: Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA). 2016 (p. 34).

[77] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast
and Stealthy Cache Attack”. In: Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA). 2016 (pp. 25, 28, 31, 33, 45).

https://chromestatus.com/feature/6497206758539264
https://chromestatus.com/feature/6497206758539264
https://support.google.com/faqs/answer/9330250?hl=en
https://support.google.com/faqs/answer/9330250?hl=en


60 BIBLIOGRAPHY

[78] D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks:
Automating Attacks on Inclusive Last-level Caches”. In: USENIX
Security Symposium. 2015 (pp. 28, 31, 33).

[79] S. Gueron. “Intel’s new AES instructions for enhanced performance and
security”. In: Fast Software Encryption (FSE). 2009 (p. 44).

[80] S. Gueron and M. E. Kounavis. “Intel®carry-less multiplication
instruction and its usage for computing the GCM mode”. In: Intel
White Paper 323640-001, Revision 2.0. 2010 (p. 44).

[81] D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games–Bringing Access-
based Cache Attacks on AES to Practice”. In: IEEE Symposium on
Security and Privacy (S&P). 2011 (pp. 19, 22, 25–27, 30, 33, 42).

[82] B. Gulmezoglu. “XAI-based Microarchitectural Side-Channel Analysis
for Website Fingerprinting Attacks and Defenses”. In: IEEE Transactions
on Dependable and Secure Computing (TDSC) (2021) (p. 22).

[83] B. Gulmezoglu, T. Eisenbarth, and B. Sunar. “Cache-based application
detection in the cloud using machine learning”. In: ACM SIGSAC Asia
Conference on Computer and Communications Security (AsiaCCS). 2017
(p. 22).

[84] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth, and B.
Sunar. “A Faster and More Realistic Flush+Reload Attack on AES”.
In: Constructive Side-Channel Analysis and Secure Design (COSADE).
2015 (p. 22).

[85] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar. “Fortuneteller:
Predicting microarchitectural attacks via unsupervised deep learning”.
In: ACM SIGSAC Asia Conference on Computer and Communications
Security (AsiaCCS). 2019 (p. 45).

[86] Y. Guo, X. Xin, Y. Zhang, and J. Yang. “Leaky Way: A Conflict-Based
Cache Covert Channel Bypassing Set Associativity”. In: IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2022 (p. 33).

[87] Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang. “Adversarial prefetch: New
cross-core cache side channel attacks”. In: IEEE Symposium on Security
and Privacy (S&P). 2022 (pp. 26, 29, 31).

[88] A. Harris, S. Wei, P. Sahu, P. Kumar, T. Austin, and M. Tiwari.
“Cyclone: Detecting contention-based cache information leaks through
cyclic interference”. In: IEEE/ACM International Symposium on
Microarchitecture (MICRO). 2019 (p. 45).

[89] R. Hat. Simultaneous Multithreading in Red Hat Enterprise Linux. https:
//access.redhat.com/solutions/rhel-smt. 2019 (p. 24).

https://access.redhat.com/solutions/rhel-smt
https://access.redhat.com/solutions/rhel-smt


BIBLIOGRAPHY 61

[90] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011 (p. 9).

[91] S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
D. Dachman-Soled, and T. Dumitraş. “Security analysis of deep neural
networks operating in the presence of cache side-channel attacks”. In:
arXiv:1810.03487. 2018 (p. 22).

[92] R. Huggahalli, R. R. Iyer, and S. Tetrick. “Direct Cache Access for
High Bandwidth Network I/O”. In: 32st International Symposium on
Computer Architecture (ISCA). 2005. doi: 10.1109/ISCA.2005.23
(pp. 16, 36).

[93] R. Hund, C. Willems, and T. Holz. “Practical Timing Side Channel
Attacks against Kernel Space ASLR”. In: IEEE Symposium on Security
and Privacy (S&P). 2013 (p. 22).

[94] M. Hutter and J.-M. Schmidt. “The temperature side channel and
heating fault attacks”. In: Smart Card Research and Advanced Application
Conference (CARDIS). 2014 (p. 18).

[95] A. Ibrahim, H. Nemati, T. Schlüter, N. O. Tippenhauer, and C. Rossow.
“Microarchitectural Leakage Templates and Their Application to Cache-
Based Side Channels”. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2022 (p. 33).

[96] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar.
“Cache Attacks Enable Bulk Key Recovery on the Cloud”. In:
Cryptographic Hardware and Embedded Systems (CHES). 2016 (p. 32).

[97] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual.
https://cdrdv2-public.intel.com/671200/325462-sdm-vol-1-
2abcd-3abcd.pdf. 2022 (pp. 16, 18).

[98] Intel. Intel CAT: Improving Real-Time Performance by Utilizing Cache
Allocation Technology. https://software.intel.com/content/www/
us/en/develop/articles/introduction- to- cache- allocation-
technology.html. 2015 (p. 17).

[99] Intel. Intel Data Direct I/O Technology Overview. https://www.intel.
co.jp/content/dam/www/public/us/en/documents/white-papers/
data-direct-i-o-technology-overview-paper.pdf. 2012 (pp. 16,
17, 36).

[100] G. Irazoqui, T. Eisenbarth, and B. Sunar. “Cross Processor Cache
Attacks”. In: ACM SIGSAC Asia Conference on Computer and
Communications Security (AsiaCCS). 2016 (pp. 23, 30).

https://doi.org/10.1109/ISCA.2005.23
https://cdrdv2-public.intel.com/671200/325462-sdm-vol-1-2abcd-3abcd.pdf
https://cdrdv2-public.intel.com/671200/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf


62 BIBLIOGRAPHY

[101] G. Irazoqui, T. Eisenbarth, and B. Sunar. “S$A: A Shared Cache
Attack That Works Across Cores and Defies VM Sandboxing – and
Its Application to AES”. In: IEEE Symposium on Security and Privacy
(S&P). 2015 (pp. 23, 28, 31, 32).

[102] G. Irazoqui, T. Eisenbarth, and B. Sunar. “Systematic reverse engineering
of cache slice selection in Intel processors”. In: Euromicro Conference on
Digital System Design (DSD). 2015 (p. 32).

[103] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. “Lucky 13
strikes back”. In: ACM SIGSAC Asia Conference on Computer and
Communications Security (AsiaCCS). 2015 (p. 22).

[104] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu, T.
Eisenbarth, and B. Sunar. “SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks”. In: USENIX Security Symposium. 2019
(p. 32).

[105] J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt, P. Schwabe, G. Barthe,
P.-A. Fouque, and Y. Acar. ““They’re not that hard to mitigate”: What
Cryptographic Library Developers Think About Timing Attacks”. In:
IEEE Symposium on Security and Privacy (S&P). 2022 (p. 43).

[106] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. “Side channel
cryptanalysis of product ciphers”. In: European Symposium on Computer
Security (ESORICS). 1998 (p. 22).

[107] T. Kim, M. Peinado, and G. Mainar-Ruiz. “StealthMem: System-Level
Protection against Cache-based Side Channel Attacks in the Cloud”. In:
USENIX Security Symposium. 2012 (p. 41).

[108] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors”. In: ACM
SIGARCH Computer Architecture News. 2014 (p. 34).

[109] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer.
“DAWG: A defense against cache timing attacks in speculative
execution processors”. In: IEEE/ACM International Symposium on
Microarchitecture (MICRO). 2018 (pp. 29, 41).

[110] P. Kocher. “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems”. In: CRYPTO. 1996 (pp. 18, 22, 43).

[111] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. “Spectre
Attacks: Exploiting Speculative Execution”. In: IEEE Symposium on
Security and Privacy (S&P). 2019 (pp. 33, 34).

[112] P. Kocher, J. Jaffe, and B. Jun. “Differential power analysis”. In:
CRYPTO. 1999 (p. 18).



BIBLIOGRAPHY 63

[113] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu,
M. Nissler, and D. Gruss. “Half-Double: Hammering From the Next Row
Over”. In: USENIX Security Symposium. 2022 (p. 34).

[114] D. Kohlbrenner and H. Shacham. “Trusted Browsers for Uncertain
Times”. In: USENIX Security Symposium. 2016 (pp. 44, 49).

[115] B. Köpf and M. Dürmuth. “A provably secure and efficient countermea-
sure against timing attacks”. In: IEEE Computer Security Foundations
(CSF). 2009 (p. 44).

[116] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi.
“NetCAT: Practical Cache Attacks From the Network”. In: IEEE
Symposium on Security and Privacy (S&P). 2020 (pp. 23, 36).

[117] A. Langley. “ctgrind—checking that functions are constant time with
Valgrind, 2010”. In: URL https://github.com/agl/ctgrind. 2010 (p. 44).

[118] H. Li, N. Niu, and B. Wang. “Cache Shaping: An Effective Defense
Against Cache-Based Website Fingerprinting”. In: ACM Conference on
Data and Application Security and Privacy (CODASPY). 2022 (p. 42).

[119] P. Li, D. Gao, and M. K. Reiter. “Stopwatch: a cloud architecture for
timing channel mitigation”. In: ACM Transactions on Information and
System Security (TISSEC). 2014 (pp. 44, 45).

[120] M. Lipp, D. Gruss, and M. Schwarz. “AMD Prefetch Attacks through
Power and Time”. In: USENIX Security Symposium. 2022 (p. 22).

[121] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard.
“ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security
Symposium. 2016 (pp. 22, 28, 33, 51).

[122] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and D. Gruss.
“Take a way: Exploring the security implications of AMD’s cache
way predictors”. In: ACM SIGSAC Asia Conference on Computer and
Communications Security (AsiaCCS). 2020 (p. 25).

[123] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss. “PLATYPUS: Software-based power side-channel attacks on
x86”. In: IEEE Symposium on Security and Privacy (S&P). 2021 (p. 52).

[124] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J.
Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.
“Meltdown: Reading Kernel Memory from User Space”. In: USENIX
Security Symposium. 2018 (p. 34).

[125] C. Liu, A. Chakraborty, N. Chawla, and N. Roggel. “Frequency throttling
side-channel attack”. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2022 (p. 52).



64 BIBLIOGRAPHY

[126] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee.
“Catalyst: Defeating Last-level Cache Side Channel Attacks in Cloud
Computing”. In: IEEE International Symposium on High Performance
Computer Architecture (HPCA). 2016 (p. 41).

[127] F. Liu, H. Wu, K. Mai, and R. B. Lee. “Newcache: Secure Cache
Architecture Thwarting Cache Side-Channel Attacks”. In: IEEE Micro.
2016 (p. 43).

[128] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache
Side-Channel Attacks Are Practical”. In: IEEE Symposium on Security
and Privacy (S&P). 2015 (pp. 22, 23, 25, 26, 28, 30–32).

[129] X. Lou, T. Zhang, J. Jiang, and Y. Zhang. “A survey of microarchitectural
side-channel vulnerabilities, attacks, and defenses in cryptography”. In:
ACM Computing Surveys. 2021 (pp. 21, 39).

[130] M. L. Luo, A Myers, and G Suh. “Stealthy Tracking of Autonomous
Vehicles with Cache Side Channels”. In: USENIX Security Symposium.
2020 (p. 22).

[131] M. Luo, W. Xiong, G. Lee, Y. Li, X. Yang, A. Zhang, Y. Tian, H.-H. S.
Lee, and G. E. Suh. “AutoCAT: Reinforcement Learning for Automated
Exploration of Cache-Timing Attacks”. In: IEEE Symposium on High
Performance Computer Architecture (HPCA). 2023 (p. 33).

[132] A. Marshall, M. Howard, G. Bugher, B. Harden, C. Kaufman, M. Rues,
and V. Bertocci. “Security best practices for developing windows azure
applications”. In: Microsoft Corp. 2010 (p. 24).

[133] R. Martin, J. Demme, and S. Sethumadhavan. “Timewarp: Rethinking
Timekeeping and Performance Monitoring Mechanisms to Mitigate Side-
channel Attacks”. In: International Symposium on Computer Architecture
(ISCA). 2012 (pp. 44, 49).

[134] C. Maurice, C. Neumann, O. Heen, and A. Francillon. “C5: Cross-Cores
Cache Covert Channel”. In: Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). 2015 (pp. 25, 28).

[135] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Francillon.
“Reverse Engineering Intel Last-Level Cache Complex Addressing Using
Performance Counters”. In: Research in Attacks, Intrusions, and Defenses
(RAID). 2015 (p. 32).

[136] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer. “Hello from the Other Side: SSH over Robust
Cache Covert Channels in the Cloud”. In: Network and Distributed
System Security Symposium (NDSS). 2017 (pp. 22, 32).



BIBLIOGRAPHY 65

[137] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest. “Spectre
is here to stay: An analysis of side-channels and speculative execution”.
In: arXiv:1902.05178. 2019 (p. 45).

[138] MDN. performance.now() - Web APIs | MDN. https://developer.
mozilla.org/en-US/docs/Web/API/Performance/now. 2022 (pp. 45,
49).

[139] A. Moghimi, G. Irazoqui, and T. Eisenbarth. “CacheZoom: How SGX
Amplifies the Power of Cache Attacks”. In: Cryptographic Hardware and
Embedded Systems (CHES). 2017 (pp. 23, 33).

[140] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar. “Memjam: A
false dependency attack against constant-time crypto implementations”.
In: International Journal of Parallel Programming. 2019 (pp. 24, 26).

[141] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre, and
G. Gogniat. “Nights-watch: A cache-based side-channel intrusion detector
using hardware performance counters”. In: Workshop on Hardware and
Architectural Support for Security and Privacy (HASP). 2018 (p. 45).

[142] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis.
“The Spy in the Sandbox: Practical Cache Attacks in JavaScript and
Their Implications”. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2015 (pp. 22, 28, 32).

[143] D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and
Countermeasures: The Case of AES”. In: Cryptographers’ Track at the
RSA Conference on Topics in Cryptology (CT-RSA). 2006 (pp. 19, 22,
23, 25, 26, 28, 31, 41).

[144] R. Paccagnella, L. Luo, and C. W. Fletcher. “Lord of the Ring(s): Side
Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical”.
In: USENIX Security Symposium. 2021 (pp. 24–26).

[145] D. Page. “Partitioned cache architecture as a side-channel defence
mechanism”. In: IACR Cryptol. ePrint Arch. 2005/280. 2005 (p. 41).

[146] D. Page. “Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel”. In: IACR Cryptol. ePrint Arch. 2002/169. 2002 (p. 22).

[147] M. S. Papamarcos and J. H. Patel. “A low-overhead coherence solution
for multiprocessors with private cache memories”. In: International
Symposium on Computer Architecture (ISCA). 1984 (p. 17).

[148] D. A. Patterson and J. L. Hennessy. Computer organization and design
ARM edition: the hardware software interface. Morgan kaufmann, 2016
(pp. 9, 10, 13).

[149] M. Payer. “HexPADS: a platform to detect “stealth” attacks”. In:
Engineering Secure Software and Systems (ESSos). 2016 (p. 45).

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now


66 BIBLIOGRAPHY

[150] C. Percival. “Cache Missing for Fun and Profit”. In: BSDCan. 2005
(pp. 22, 26, 27, 41).

[151] P. Pessl, L. G. Bruinderink, and Y. Yarom. “To BLISS-B or not to be:
Attacking strongSwan’s Implementation of Post-Quantum Signatures”.
In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2017 (p. 22).

[152] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA:
Exploiting DRAM Addressing for Cross-cpu Attacks”. In: USENIX
Security Symposium. 2016 (pp. 23–26).

[153] A. Purnal, M. Bognar, F. Piessens, and I. Verbauwhede. “ShowTime:
Amplifying Arbitrary CPU Timing Side Channels”. In: ACM SIGSAC
Asia Conference on Computer and Communications Security (AsiaCCS).
2023 (p. 50).

[154] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede. “Systematic Analysis
of Randomization-based Protected Cache Architectures”. In: IEEE
Symposium on Security and Privacy (S&P). 2021 (pp. 48, 49, 52, 153).

[155] A. Purnal, F. Turan, and I. Verbauwhede. “Double Trouble: Combined
Heterogeneous Attacks on Non-inclusive Cache Hierarchies”. In: USENIX
Security Symposium. 2022 (pp. 23, 33, 36, 51, 119).

[156] A. Purnal, F. Turan, and I. Verbauwhede. “Prime+Scope: Overcoming
the Observer Effect for High-Precision Cache Contention Attacks”. In:
ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2021 (pp. 26, 30, 31, 33, 35, 51).

[157] M. K. Qureshi. “CEASER: Mitigating Conflict-based Cache Attacks
via Encrypted-address and Remapping”. In: IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2018 (pp. 43, 46–48).

[158] M. K. Qureshi. “New Attacks and Defense for Encrypted-address Cache”.
In: International Symposium on Computer Architecture (ISCA). 2019
(pp. 43, 46–48).

[159] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida. “Rage against the
machine clear: A systematic analysis of machine clears and their
implications for transient execution attacks”. In: USENIX Security
Symposium. 2021 (p. 34).

[160] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida. “Crosstalk:
Speculative Data Leaks Across Cores are Real”. In: IEEE Symposium
on Security and Privacy (S&P). 2021 (p. 34).

[161] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and A. Venkat.
“I see dead µops: Leaking secrets via Intel/AMD micro-op caches”.
In: International Symposium on Computer Architecture (ISCA). 2021
(pp. 24–26).



BIBLIOGRAPHY 67

[162] O. Reparaz, J. Balasch, and I. Verbauwhede. “Dude, is my code constant
time?” In: Design, Automation & Test in Europe (DATE). 2017 (p. 44).

[163] J. Ribes-González, O. Farràs, C. Hernández, V. Kostalabros, and M.
Moretó. “A Security Model for Randomization-based Protected Caches”.
In: Cryptographic Hardware and Embedded Systems (CHES). 2022 (p. 49).

[164] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi. “SMASH: Synchronized Many-sided Rowhammer Attacks
from JavaScript”. In: USENIX Security Symposium. 2021 (p. 34).

[165] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. “Hey, You,
Get off of My Cloud: Exploring Information Leakage in Third-party
Compute Clouds”. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2009 (p. 22).

[166] T. Rokicki, C. Maurice, M. Botvinnik, and Y. Oren. “Port Contention
Goes Portable: Port Contention Side Channels in Web Browsers”. In:
ACM SIGSAC Asia Conference on Computer and Communications
Security (AsiaCCS). 2022 (p. 24).

[167] T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In Search of Lost
Time: A Review of JavaScript Timers in Browsers”. In: IEEE European
Symposium on Security and Privacy (EuroS&P). 2021 (p. 45).

[168] T. Rokicki, C. Maurice, and M. Schwarz. “CPU Port Contention Without
SMT”. In: European Symposium on Computer Security (ESORICS). 2022
(p. 22).

[169] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom.
“The 9 lives of Bleichenbacher’s CAT: new cache attacks on TLS
implementations”. In: IEEE Symposium on Security and Privacy (S&P).
2019 (p. 22).

[170] E. Ronen, K. G. Paterson, and A. Shamir. “Pseudo constant time
implementations of TLS are only pseudo secure”. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2018
(p. 22).

[171] G. Saileshwar, C. W. Fletcher, and M. Qureshi. “Streamline: a fast,
flushless cache covert-channel attack by enabling asynchronous collusion”.
In: ASPLOS. 2021 (p. 26).

[172] G. Saileshwar and M. Qureshi. “MIRAGE: Mitigating Conflict-Based
Cache Attacks with a Practical Fully-Associative Design”. In: USENIX
Security Symposium. 2021 (pp. 48, 49).

[173] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom.
“CacheOut: Leaking data on Intel CPUs via cache evictions”. In: IEEE
Symposium on Security and Privacy (S&P). 2021 (p. 34).



68 BIBLIOGRAPHY

[174] M. Schwarz, M. Lipp, D. Moghimi, J. V. Bulck, J. Stecklina, T. Prescher,
and D. Gruss. “ZombieLoad: Cross-Privilege-Boundary Data Sampling”.
In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2019 (p. 34).

[175] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks in
JavaScript”. In: Financial Cryptography and Data Security. 2017 (p. 45).

[176] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss. “Netspectre:
Read arbitrary memory over network”. In: European Symposium on
Computer Security (ESORICS). 2019 (pp. 23–26).

[177] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Malware
Guard Extension: Using SGX to Conceal Cache Attacks”. In: Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA). 2017
(p. 19).

[178] M. Schwarzl, P. Borrello, A. Kogler, K. Varda, T. Schuster, M. Schwarz,
and D. Gruss. “Robust and Scalable Process Isolation Against Spectre in
the Cloud”. In: European Symposium on Computer Security (ESORICS).
2022 (p. 45).

[179] M. Schwarzl, E. Kraft, and D. Gruss. “Layered Binary Templating”. In:
ACNS. 2023 (p. 33).

[180] M. Seaborn and T. Dullien. “Exploiting the DRAM Rowhammer Bug to
Gain Kernel Privileges”. In: Black Hat. 2015 (p. 34).

[181] A. Seznec. “A Case for Two-way Skewed-associative Caches”. In:
International Symposium on Computer Architecture (ISCA). 1993 (p. 47).

[182] A. Shahverdi, M. Shirinov, and D. Dachman-Soled. “Database Recon-
struction from Noisy Volumes: A Cache {Side-Channel} Attack on
{SQLite}”. In: USENIX Security Symposium. 2021 (p. 22).

[183] C. E. Shannon. “A Mathematical Theory of Communication”. In: ACM
SIGMOBILE Mobile Computing and Communications Review (2001)
(p. 25).

[184] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur. “Unveiling
hardware-based data prefetcher, a hidden source of information leakage”.
In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2018 (pp. 24, 26, 33).

[185] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom. “Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses”. In: USENIX Security Symposium. 2021 (p. 28).



BIBLIOGRAPHY 69

[186] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren,
and Y. Yarom. “Robust Website Fingerprinting Through the Cache
Occupancy Channel”. In: USENIX Security Symposium. 2019 (pp. 22,
25, 28, 31, 42).

[187] L. Simon, D. Chisnall, and R. Anderson. “What you get is what you C:
Controlling side effects in mainstream C compilers”. In: IEEE European
Symposium on Security and Privacy (EuroS&P). 2018 (p. 44).

[188] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu. “Randomized
Last-Level Caches Are Still Vulnerable to Cache Side-Channel Attacks!
But We Can Fix It”. In: IEEE Symposium on Security and Privacy
(S&P). 2021 (pp. 48, 49).

[189] W. Song and P. Liu. “Dynamically Finding Minimal Eviction Sets Can
Be Quicker Than You Think for Side-Channel Attacks against the LLC”.
In: Research in Attacks, Intrusions, and Defenses (RAID). 2019 (p. 32).

[190] F. Stolz, J. P. Thoma, P. Sasdrich, and T. Güneysu. “Risky Translations:
Securing TLBs against Timing Side Channels”. In: Cryptographic
Hardware and Embedded Systems (CHES). 2023 (p. 49).

[191] D. Sullivan, O. Arias, T. Meade, and Y. Jin. “Microarchitectural
Minefields: 4K-Aliasing Covert Channel and Multi-Tenant Detection
in Iaas Clouds.” In: Network and Distributed System Security Symposium
(NDSS). 2018 (pp. 22, 26).

[192] J. Szefer. “Survey of microarchitectural side and covert channels, attacks,
and defenses”. In: Journal of Hardware and Systems Security. 2019
(pp. 21, 39).

[193] M. Tan, J. Wan, Z. Zhou, and Z. Li. “Invisible Probe: Timing Attacks
with PCIe Congestion Side-channel”. In: IEEE Symposium on Security
and Privacy (S&P). 2021 (pp. 24, 26).

[194] Q. Tan, Z. Zeng, K. Bu, and K. Ren. “PhantomCache: Obfuscating Cache
Conflicts with Localized Randomization”. In: Network and Distributed
System Security Symposium (NDSS). 2020 (pp. 47, 48).

[195] M. Taram, X. Ren, A. Venkat, and D. Tullsen. “SecSMT: Securing
SMT processors against contention-based covert channels”. In: USENIX
Security Symposium. 2022 (pp. 24, 26, 41).

[196] M. Taram, A. Venkat, and D. Tullsen. “Packet Chasing: Spying
on Network Packets over a Cache Side-channel”. In: International
Symposium on Computer Architecture (ISCA). 2020 (pp. 22, 36).

[197] A. Tatar, D. Trujillo, C. Giuffrida, and H. Bos. TLB;DR: Enhancing
TLB-based attacks with TLB desynchronized reverse engineering. 2022
(p. 26).



70 BIBLIOGRAPHY

[198] J. P. Thoma and T. Güneysu. “Write Me and I’ll Tell You Secrets–Write-
After-Write Effects On Intel CPUs”. In: Research in Attacks, Intrusions,
and Defenses (RAID). 2022 (p. 43).

[199] J. P. Thoma, C. Niesler, D. Funke, G. Leander, P. Mayr, N. Pohl,
L. Davi, and T. Güneysu. “ClepsydraCache–Preventing Cache Attacks
with Time-Based Evictions”. In: USENIX Security Symposium. 2023
(pp. 48, 49).

[200] L. Trampert, C. Rossow, and M. Schwarz. “Browser-Based CPU Finger-
printing”. In: European Symposium on Computer Security (ESORICS).
2022 (p. 22).

[201] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla. “Cache Side-channel
Attacks and Time-predictability in High-performance Critical Real-time
Systems”. In: Design Automation Conference (DAC). 2018 (pp. 43, 46).

[202] C. Trippel, D. Lustig, and M. Martonosi. “MeltdownPrime and
SpectrePrime: Automatically-synthesized attacks exploiting invalidation-
based coherence protocols”. In: arXiv:1802.03802. 2018 (pp. 26, 29).

[203] E. Tromer, D. A. Osvik, and A. Shamir. “Efficient Cache Attacks on
AES, and Countermeasures”. In: Journal of Cryptology. 2010 (p. 22).

[204] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi.
“Cryptanalysis of DES implemented on computers with cache”. In:
Cryptographic Hardware and Embedded Systems (CHES). 2003 (p. 22).

[205] T. Unterluggauer, A. Harris, S. Constable, F. Liu, and C. Rozas.
“Chameleon Cache: Approximating Fully Associative Caches with
Random Replacement to Prevent Contention-Based Cache Attacks”.
In: IEEE Symposium on Secure and Private Execution Environment
Design (SEED). 2022 (pp. 48, 49).

[206] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
order Execution”. In: USENIX Security Symposium. 2018 (p. 34).

[207] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens. “LVI: Hijacking transient
execution through microarchitectural load value injection”. In: IEEE
Symposium on Security and Privacy (S&P). 2020 (p. 34).

[208] J. Van Bulck, F. Piessens, and R. Strackx. “Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”.
In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2018 (p. 23).



BIBLIOGRAPHY 71

[209] J. Van Bulck, F. Piessens, and R. Strackx. “SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control”. In: Workshop
on System Software for Trusted Execution (SysTEX). 2017 (p. 23).

[210] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida. “Drammer: Deterministic
Rowhammer attacks on mobile platforms”. In: ACM SIGSAC Conference
on Computer and Communications Security (CCS). 2016 (p. 34).

[211] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi. “Malicious
management unit: Why stopping cache attacks in software is harder
than you think”. In: USENIX Security Symposium. 2018 (p. 41).

[212] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K.
Razavi, H. Bos, and C. Giuffrida. “RIDL: Rogue In-flight Data Load”.
In: IEEE Symposium on Security and Privacy (S&P). 2019 (p. 34).

[213] B. C. Vattikonda, S. Das, and H. Shacham. “Eliminating Fine Grained
Timers in Xen”. In: ACM Workshop on Cloud Computing Security
(CCSW). 2011 (pp. 44, 49).

[214] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner. “Augury: Using data
memory-dependent prefetchers to leak data at rest”. In: IEEE Symposium
on Security and Privacy (S&P). 2022 (pp. 25, 51).

[215] P. Vila, A. Abel, M. Guarnieri, B. Köpf, and J. Reineke. “Flushgeist:
Cache leaks from beyond the flush”. In: arXiv:2005.13853. 2020 (p. 41).

[216] P. Vila, P. Ganty, M. Guarnieri, and B. Köpf. “CacheQuery: Learning
replacement policies from hardware caches”. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation. 2020
(p. 33).

[217] P. Vila, B. Köpf, and J. F. Morales. “Theory and Practice of Finding
Eviction Sets”. In: IEEE Symposium on Security and Privacy (S&P).
2019 (pp. 32, 47).

[218] VMWare. Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735). https://kb.vmware.com/s/
article/2080735. 2014 (p. 30).

[219] W3C. High Resolution Time. https://www.w3.org/TR/hr-time-3/.
2022 (pp. 45, 49).

[220] J. Wan, Y. Bi, Z. Zhou, and Z. Li. “MeshUp: Stateless cache side-channel
attack on CPU mesh”. In: IEEE Symposium on Security and Privacy
(S&P). 2022 (pp. 24, 26).

https://kb.vmware.com/s/article/2080735
https://kb.vmware.com/s/article/2080735
https://www.w3.org/TR/hr-time-3/


72 BIBLIOGRAPHY

[221] D. Wang, Z. Qian, N. Abu-Ghazaleh, and S. V. Krishnamurthy. “Papp:
Prefetcher-aware Prime and Probe Side-channel Attack”. In: Design
Automation Conference (DAC). 2019 (p. 33).

[222] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu. “CacheD: Identifying
Cache-Based Timing Channels in Production Software”. In: USENIX
Security Symposium. 2017 (p. 44).

[223] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner. “Hertzbleed: Turning Power Side-Channel Attacks Into
Remote Timing Attacks on x86”. In: USENIX Security Symposium. 2022
(p. 52).

[224] Z. Wang and R. B. Lee. “New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks”. In: International Symposium on
Computer Architecture (ISCA). 2007 (pp. 41, 43).

[225] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow. “Osiris:
Automated Discovery of Microarchitectural Side Channels”. In: USENIX
Security Symposium. 2021 (p. 33).

[226] WebKit. What Spectre and Meltdown Mean For WebKit. https : / /
webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-
webkit/. 2018 (pp. 45, 49).

[227] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and
B. Sunar. “JackHammer: Efficient Rowhammer on Heterogeneous FPGA-
CPU Platforms”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems. 2020 (pp. 23, 36).

[228] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard. “SCATTERCACHE: Thwarting Cache Attacks via Cache
Set Randomization”. In: USENIX Security Symposium. 2019 (pp. 43, 46,
48).

[229] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar. “MicroWalk: A
Framework for Finding Side Channels in Binaries”. In: Annual Computer
Security Applications Conference (ACSAC). 2018 (p. 44).

[230] H. Winderix, J. T. Mühlberg, and F. Piessens. “Compiler-Assisted
Hardening of Embedded Software Against Interrupt Latency Side-
Channel Attacks”. In: IEEE European Symposium on Security and
Privacy (EuroS&P). 2021 (p. 44).

[231] W. Xiong and J. Szefer. “Leaking Information Through Cache
LRU States”. In: IEEE Symposium on High Performance Computer
Architecture (HPCA). 2020 (pp. 25, 26, 29, 30).

[232] W. Xiong and J. Szefer. “Survey of transient execution attacks and their
mitigations”. In: ACM Computing Surveys. 2021 (p. 21).

https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/


BIBLIOGRAPHY 73

[233] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting.
“An exploration of L2 cache covert channels in virtualized environments”.
In: ACM Workshop on Cloud Computing Security (CCSW). 2011 (p. 23).

[234] M. Yan, C. Fletcher, and J. Torrellas. “Cache Telepathy: Leveraging
Shared Resource Attacks to Learn DNN Architectures”. In: USENIX
Security Symposium. 2020 (p. 22).

[235] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas. “Secure hierarchy-aware
cache replacement policy (SHARP): Defending against cache-based side
channel attacks”. In: International Symposium on Computer Architecture
(ISCA). 2017 (p. 42).

[236] M. Yan, Y. Shalabi, and J. Torrellas. “ReplayConfusion: Detecting cache-
based covert channel attacks using record and replay”. In: IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2016 (p. 45).

[237] M. Yan, R. Sprabery, B. Gopireddy, C. W. Fletcher, R. H. Campbell,
and J. Torrellas. “Attack Directories, Not Caches: Side Channel Attacks
in a Non-Inclusive World”. In: IEEE Symposium on Security and Privacy
(S&P). 2019 (pp. 26, 28, 30, 33, 36, 51).

[238] M. Yan, J.-Y. Wen, C. W. Fletcher, and J. Torrellas. “SecDir: a secure
directory to defeat directory side-channel attacks”. In: International
Symposium on Computer Architecture (ISCA). 2019 (pp. 32, 36, 42).

[239] F. Yao, M. Doroslovacki, and G. Venkataramani. “Are Coherence Proto-
col States Vulnerable to Information Leakage?” In: IEEE Symposium on
High Performance Computer Architecture (HPCA). 2018 (pp. 26, 29).

[240] Y. Yarom and N. Benger. “Recovering OpenSSL ECDSA Nonces Using
the FLUSH+ RELOAD Cache Side-channel Attack.” In: IACR Cryptol.
ePrint Arch. 2014/140. 2014 (p. 30).

[241] Y. Yarom and K. Falkner. “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack”. In: USENIX Security Symposium.
2014 (pp. 22, 23, 26, 27, 30, 31).

[242] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser. “Mapping the Intel
last-level cache”. In: IACR Cryptol. ePrint Arch. 2015/905. 2015 (p. 32).

[243] Y. Yarom, D. Genkin, and N. Heninger. “CacheBleed: a Timing Attack on
OpenSSL Constant-time RSA”. In: Journal of Cryptographic Engineering.
2017 (pp. 25, 26, 33).

[244] J. Yu, L. Hsiung, M. El Hajj, and C. W. Fletcher. “Data oblivious ISA
extensions for side channel-resistant and high performance computing”.
In: Network and Distributed System Security Symposium (NDSS). 2018
(p. 44).



74 BIBLIOGRAPHY

[245] M. Zaheri, Y. Oren, and R. Curtmola. “Targeted Deanonymization via
the Cache Side Channel: Attacks and Defenses”. In: USENIX Security
Symposium. 2022 (p. 22).

[246] R. Zhang, X. Su, J. Wang, C. Wang, W. Liu, and R. W. Lau. “On
mitigating the risk of cross-VM covert channels in a public cloud”. In:
IEEE Transactions on Parallel and Distributed Systems (2014) (p. 42).

[247] R. Zhang, T. Kim, D. Weber, and M. Schwarz. “(M) WAIT for It:
Bridging the Gap between Microarchitectural and Architectural Side
Channels”. In: USENIX Security. 2023 (p. 51).

[248] T. Zhang, Y. Zhang, and R. B. Lee. “Cloudradar: A real-time side-
channel attack detection system in clouds”. In: Research in Attacks,
Intrusions, and Defenses (RAID). 2016 (p. 45).

[249] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. “Homealone: Co-
residency detection in the cloud via side-channel analysis”. In: IEEE
Symposium on Security and Privacy (S&P). 2011 (p. 22).

[250] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. “Cross-VM Side
Channels and their use to Extract Private Keys”. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2012
(pp. 22, 28).

[251] Y. Zhang and M. K. Reiter. “Düppel: Retrofitting commodity operating
systems to mitigate cache side channels in the cloud”. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2013
(p. 41).

[252] L. Zhao, R. R. Iyer, S. Makineni, D. Newell, and L. Cheng. “NCID: a
Non-inclusive cache, Inclusive Directory Architecture for Flexible and
Efficient Cache Hierarchies”. In: Conference on Computing Frontiers.
2010 (p. 16).

[253] Z. N. Zhao, A. Morrison, C. W. Fletcher, and J. Torrellas. “Binoculars:
Contention-Based Side-Channel Attacks Exploiting the Page Walker”.
In: USENIX Security Symposium. 2022 (p. 26).

[254] Z. Zhou, M. K. Reiter, and Y. Zhang. “A software approach to defeating
side channels in last-level caches”. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2016 (p. 41).



Part II

Publications

75





List of publications

International Conferences and Workshops
with Proceedings

1. Jesse De Meulemeester, Antoon Purnal, Lennert Wouters, Arthur
Beckers and Ingrid Verbauwhede, "SpectrEM: Exploiting Electromag-
netic Emanations During Transient Execution". USENIX Security
Symposium, 2023

2. Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Ver-
bauwhede, "ShowTime: Amplifying Arbitrary CPU Timing Side Channels".
ACM SIGSAC Asia Conference on Computer and Communications
Security (AsiaCCS), 2023

3. Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder,
Thomas Unterluggauer, Stefan Mangard, and Daniel Gruss, "Scatter and
Split Securely: Defeating Cache Contention and Occupancy Attacks".
IEEE Symposium on Security and Privacy (S&P), 2023

4. Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede, “Double
Trouble: Combined Heterogeneous Attacks on Non-Inclusive Cache
Hierarchies”. USENIX Security Symposium, 2022

5. Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede, “Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention
Attacks”. ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2021

6. Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede,
“Systematic Analysis of Randomization-based Protected Cache Architec-
tures”. IEEE Symposium on Security and Privacy (S&P), 2021

77



78

7. Arne Deprez, Elena Andreeva, Jose Maria Bermudo Mera, Angshuman
Karmakar, and Antoon Purnal, "Optimized Software Implementations
for the Lightweight Encryption Scheme ForkAE". International Conference
on Smart Card Research and Advanced Applications (CARDIS), 2020

8. Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhan-
itabar, Arnab Roy, and Damian Vizár, "Forkcipher: a New Primitive
for Authenticated Encryption of Very Short Messages". Advances in
Cryptology (ASIACRYPT), 2019

9. Antoon Purnal, Victor Arribas, and Lauren De Meyer, "Trade-offs in
Protecting Keccak Against Combined Side-Channel and Fault Attacks".
International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE), 2019

Technical Reports

10. Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhan-
itabar, Arnab Roy, and Damian Vizár, "ForkAE v1". Submission to the
NIST Lightweight Cryptography Standardization, 2019

11. Antoon Purnal and Ingrid Verbauwhede, "Advanced profiling for
probabilistic Prime+ Probe attacks and covert channels in ScatterCache".
arXiv preprint arXiv:1908.03383, 2019

12. Antoon Purnal, Elena Andreeva, Arnab Roy, and Damian Vizár, "What
the Fork: Implementation Aspects of a Forkcipher". NIST Second
Lightweight Cryptography Workshop, 2019

Unpublished Manuscripts

13. Elena Andreeva, Benoit Cogliati, Virginie Lallemand, Marine Minier,
Antoon Purnal, and Arnab Roy, "Masked Iterate-Fork-Iterate: A New
Design Paradigm for Tweakable Expanding Pseudorandom Function".
Under submission, 2023



Chapter 6

Prime+Scope: Overcoming
the Observer Effect for
High-Precision Cache
Contention Attacks

Publication data

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede, “Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention Attacks”.
ACM SIGSAC Conference on Computer and Communications Security (CCS),
2021, pp. 2906–2920.

Contributions

Principal author.

79



Prime+Scope: Overcoming the Observer
Effect for High-Precision Cache Contention

Attacks
Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

imec-COSIC, KU Leuven

Abstract. Modern processors expose software to information leakage
through shared microarchitectural state. One of the most severe leakage
channels is cache contention, exploited by attacks referred to as Prime+
Probe, which can infer fine-grained memory access patterns while placing
only limited assumptions on attacker capabilities.
In this work, we strengthen the cache contention channel with a near-
optimal time resolution. We propose Prime+Scope, a cross-core cache
contention attack that performs back-to-back cache contention measure-
ments that access only a single cache line. It offers a time resolution
of around 70 cycles (25ns), while maintaining the wide applicability of
Prime+Probe. To enable such a rapid measurement, we rely on the deter-
ministic nature of modern replacement policies and their (non-)interaction
across cache levels. We provide a methodology to, essentially, prepare
multiple cache levels simultaneously, and apply it to Intel processors
with both inclusive and non-inclusive cache hierarchies. We characterize
the resolution of Prime+Scope, and confirm it with a cross-core covert
channel (capacity up to 3.5 Mbps, no shared memory) and an improved
attack on AES T-tables. Finally, we use the properties underlying Prime+
Scope to bootstrap the construction of the eviction sets needed for the
attack. The resulting routine outperforms state-of-the-art techniques by
two orders of magnitude.
Ultimately, our work shows that interference through cache contention
can provide richer temporal precision than state-of-the-art attacks that
directly interact with monitored memory addresses.

1 Introduction
Modern processors comprise many hardware components that, transparently to
the programmer, enhance average software performance. Several such compo-
nents, with the cache hierarchy as the leading example, may be shared across

80



Prime+Scope: High-Precision Cache Contention Attacks

software-defined security boundaries. Through their access patterns, programs
may unwillingly encode secret information into shared cache state, which can be
extracted by a co-located adversary using a timing side channel. In particular,
she first prepares the cache state and afterwards measures it to infer the changes
produced by other programs.

Several techniques have been proposed to prepare and measure the cache
state. While some can only monitor accesses to shared memory between attacker
and victim, or require specific processor features, other techniques have no such
prerequisites and are purely based on contention for cache resources. By
targeting core-shared cache levels, such as the last-level cache (LLC) [1, 2], or
the coherence directory (CD) [3], an attacker can measure cache contention for
victim programs running on other processor cores.

Known mostly as Prime+Probe, cache contention attacks are widely ap-
plicable. The contention channel leaks information across virtual machine
boundaries [4, 1, 2], to and from sandboxed code (e.g., in the browser [5, 6]),
or even over the network [7]. It has been used to extract sensitive informa-
tion of various kinds, such as cryptographic keys [8], user input [4, 7], kernel
information [9] and browsing behavior [6]. It also enables establishing covert
channels [1, 10, 11] and, recently, transient execution attacks [12, 13].

An important metric of cache attack techniques is their temporal resolution,
i.e., the precision with which they can localize victim memory accesses in the
time domain. The finer the resolution of the attack, the greater the visibility
into data accesses and control flow of victim applications. This is of special
importance in the general setting, where the attacker monitors victim behavior
asynchronously and victim accesses may occur at any given time.

In case of insufficient time precision, prior works slow down the victim
application (e.g., [14, 15, 16, 17]), or interrupt it heavily (e.g., [18, 19]), to amplify
secret-dependent time differences. Instead of such performance degradation of
the victim, which may not always be possible, this work pursues the opposite
direction and investigates whether the time precision of cache attacks can be
improved (and optimized). In particular, we identify two key challenges to
enhance the time resolution of state-of-the-art cache contention attacks.

First, the main challenge to improve the precision of cache attacks, in general,
is the observer effect, i.e., the phenomenon where the act of measuring a system
affects its state. Many techniques suffer from it, often requiring the state change
of every measurement to be undone before the next one can be performed. To
minimize the influence of this effect, cache attacks are often discretized along
the time axis in windows of fixed duration (e.g., [20, 21, 1, 14, 3]). However,
this places fundamental limits on their time resolution.
Second, the cache contention channel, in particular, faces another bottleneck.
For Prime+Probe, each probe accesses as many cache lines as the associativity
of the target structure, e.g., at least 11 ways for core-shared caches on modern

81



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Intel CPUs. Therefore, the time resolution is structurally bounded by the time
it takes to access all these lines, even if the observer effect were to be overcome.

In this paper, we seek to optimize the resolution of Prime+Probe-style
attacks. To this end, we ask the following main questions:
Is it possible to bypass the observer effect? Can contention be inferred by
repeatedly measuring the access latency of a single cache line?
In this work, we make the surprising observation that the cache contention
channel can have a higher time resolution than techniques that access monitored
addresses directly. We propose Prime+Scope, a high-precision cross-core cache
contention attack, whose measurement is both repeatable (i.e., the cache state
does not need to be reinstated after every measurement), and essentially optimal
(i.e., it performs a single memory access). Prime+Scope can monitor events
asynchronously with a precision in the order of 25ns, significantly outperforming
comparable techniques. At the same time, Prime+Scope inherits the general
applicability of Prime+Probe.

Prime+Scope prepares the cache more precisely than traditional cache
contention attacks. We obtain fast and effective Prime patterns using both an
automated and a handcrafted methodology (resp. for inclusive and non-inclusive
Intel LLCs). In the end, we find Prime+Scope to apply to all tested Intel
CPUs of the last decade.

To confirm the superior time precision of Prime+Scope, we perform a
quantitative comparison with state-of-the-art techniques. We also implement a
cross-core covert channel on a last-level cache (LLC) and a coherence directory
(CD). Symbols are encoded temporally in slots of no more than 80-120 processor
cycles. The LLC/CD channels reach a capacity of 3.5 Mbps and 3.1 Mbps,
respectively.

We evaluate Prime+Scope on a known-vulnerable AES implementation.
With its fine temporal precision, it can extract the key material with 5x-25x
fewer encryptions than Prime+Probe.

Finally, we bootstrap our newly discovered primitive to create a straight-
forward, portable and linear-time eviction set construction routine, which
outperforms previous techniques by 100-600x.

Summarized, this paper makes the following main contributions:

- We present Prime+Scope, a generic cross-core cache contention primitive
with near-optimal temporal resolution.

- To prepare the cache for continuous measurement, we propose PrimeTime,
a methodology to find efficient Prime patterns.

- We evaluate Prime+Scope using micro-benchmarks, a high-capacity covert
channel, and a high-precision attack on AES.

- Using the principles underlying Prime+Scope, we present fast and simple
routines to construct LLC/CD eviction sets.

82



Prime+Scope: High-Precision Cache Contention Attacks

We have disclosed our findings to Intel. To facilitate reproduction of our research,
artifacts are made available at

https://www.github.com/KULeuven-COSIC/PRIME-SCOPE

This article is organized as follows. Section 2 provides the necessary background.
Section 3 explores the conditions for back-to-back cache measurements. Sec-
tion 4 exposes Prime+Scope, our main result. Section 5 covers the efficient
preparation of the cache state, and Section 6 evaluates Prime+Scope for
micro-benchmarks and concrete examples. Section 7 positions our findings,
Section 8 discusses limitations and countermeasures, and Section 9 concludes.

2 Preliminaries

2.1 Caches

To overcome the comparatively high latency of memory lookups, caches are
buffers that keep soon-to-be used data close to the CPU. Caches operate on
fixed-size (e.g., 64 bytes) memory blocks called cache lines, and are typically
set-associative, referring to their organization along sets and ways. Cache lines
are mapped to sets based on their memory address, and addresses mapping to
the same set are called congruent. The maximal number of congruent lines that
can reside in the cache at any given time is determined by the number of ways
W , also referred to as the associativity.

When caching a new line exceeds the associativity, one line in the set is
evicted; in this paper, we refer to that line as the eviction candidate (EVC).
The EVC is determined by the replacement policy, which is implemented by a
(complex) state machine at the set-level, for which the state transitions depend
on the accesses to the set.

Contemporary Intel processors feature a three-level cache hierarchy, where
the access latency increases along with the distance from the CPU. When a
CPU core references a memory address, the cache line containing this address is
retrieved from the closest cache level that has a valid copy. The first two levels
(L1 and L2) are organized separately for every core, while the last-level cache
(L3, or LLC) is shared among all the cores. The majority of Intel processors
have inclusive LLCs, meaning that cache lines present in the L1 and L2 caches
must also be present in the LLC. However, recent Intel servers feature higher
core counts and larger private caches, prompting the adoption of non-inclusive
LLCs. In such cache hierarchies, the LLC may or may not contain lines that
are present in L1 or L2, reducing the storage overhead due to inclusion.

83



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

(i) Windowed techniques cope with blind
spots by waiting between preparation and

measurement, lowering their time
precision

(ii) Windowless techniques measure the
cache state continuously without waiting,
and revert the state only after detecting

an event

Figure 1: Cache Manipulation techniques in the windowed vs. windowless
paradigms.

2.2 Cache Side-Channel Attacks

Over the last years, several techniques have been proposed to infer memory
access patterns by other programs through observation of shared cache state.
The two most prominent attack classes are represented, respectively, by Flush+
Reload and Prime+Probe. In this overview, and in the paper, we focus on
attacks across cores.

Flush+Reload-style techniques. If the memory address to be monitored exists
in memory shared with the attacker, she is able to access it directly, allowing
to infer memory activity by other processes at cache-line granularity. The
representative technique for this attack class is Flush+Reload [18, 20], which
removes (flushes) the cache line containing a target address from the cache, and
later determines if the victim accessed it by its reload time. If cache flushing is
not available, Evict+Reload [22] replaces it with eviction.

Provided that the time until completion of the clflush instruction depends
on the presence of the target in the cache, it can be used to both prepare and
measure the cache state. This technique, referred to as Flush+Flush [23],
has a higher time resolution than Flush+Reload. However, the more subtle
time-dependence of cache flushes results in a comparatively low cross-core
accuracy.

The main drawback of Flush+Reload-style attacks is their structural
dependence on shared memory with a victim, which is harder to obtain for an
attacker than only co-location. Moreover, a cache flush instruction may also
not be available in restricted contexts, e.g., in the browser [24, 23], or generally
for unprivileged processes [25].

84



Prime+Scope: High-Precision Cache Contention Attacks

Prime+Probe-style techniques. Cache contention attacks, often synony-
mously referred to as Prime+Probe attacks, prime a full cache set and
measure the time it takes. Activity in this cache set by other processes will
evict one or more of the attacker’s lines, which is reflected in a higher latency
to complete the prime.

For a cross-core attack, an adversary generally targets an inclusive structure
shared with the victim. The inclusive property guarantees the eviction of
congruent addresses from the victim’s private caches, ensuring that future
victim accesses to them indeed generate contention on the measured set. In
cache hierarchies with an inclusive last-level cache (LLC), this requirement is
readily obtained [1, 2]. For non-inclusive Intel caches, a suitable structure has
been found in the coherence directory (CD) [3], which keeps track of lines in all
the L2 caches. It is organized in sets, like the LLC, with the same function to
index memory addresses into sets and slices. Instead of priming the LLC, the
attacker primes the CD, evicting the target address from the CD and, due to
its inclusion property, also from the victim’s private L1/L2 caches. When lines
are evicted from the CD, they are moved to the LLC [3].

To measure contention on the LLC (or CD), an attacker needs to obtain
memory addresses that are mapped to the same set. In the presence of unknown
physical address bits or cache slices, these so-called eviction sets need to be
obtained at runtime [1, 26, 3].

As a variant of Prime+Probe, Prime+Abort [27] is a contention-informed
attack using Intel TSX. As TSX transactions are aborted upon eviction of certain
lines from the LLC, it is amenable to measure LLC contention, as attack [27]
or defense [28]. Intel TSX may not be exposed to an attacker (e.g., from the
browser), may be disabled for security reasons [29], or may not be available at
all.

Cache contention attacks offer a spatial granularity of sets, which is inferior
to the cache-line granularity of shared-memory attacks. However, due to the
large number of sets in modern LLCs/CDs, the spatial information encoded in
cache contention is still quite large.

3 Cache Manipulation Paradigms
Assume an attacker wants to spy on a cross-core event, i.e., one or more memory
accesses by a victim program running on another CPU core. All cache attack
techniques first prepare the cache state, and then measure it to infer the presence
or absence of an event.

This section first revisits why some techniques need to allocate a waiting
period between preparation and measurement, essentially partitioning the time
axis into windows. Then, it examines the conditions under which a windowless
paradigm can be adopted.

85



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

3.1 Windowed Paradigm
Blind Spots. To see why cache attacks are often organized in discrete time
windows, consider the traces in Figure 1i. The first Flush+Reload trace
(Figure 1i-A) continuously flushes and reloads a target. Such an application of
Flush+Reload fails to detect many events. In particular, events that occur
during the period slightly before the Reload, until the Flush has evicted the
target, remain undetected [20, 14]. We refer to such a period as a blind spot.

To reduce the effect of blind spots on the detection rate, a wait stage may be
inserted, i.e., a predetermined idle period between preparation and measurement.
As in Figure 1i-B, such an organization detects the events that occur during
the wait stage.

Other techniques, like Evict+Reload, Flush+Flush, and Prime+
Probe, can also be instantiated like this (cf. Figure 1i-C-D-E). Evict+Reload
behaves similarly to Flush+Reload, but has a larger blind spot as cache
eviction is slower than flushing. In Section 3.2, we will see which techniques
can be used without blind spots.

Resolution. The temporal resolution of windowed techniques is limited by
the combined duration of the preparation, wait and measurement stages. In
particular, the waiting period marks a trade-off between the accuracy and
resolution of the attack. The larger the blind spot, the lower the resolution for
the same detection accuracy.

Despite this limitation, windowed techniques such as Flush+Reload can
be very powerful in practice. For instance, blind spots can be bypassed when the
attacker controls the timing of the event (e.g., by synchronizing [8, 30, 31, 32]
or interleaving [18, 33] with the victim). The limitation is also attenuated for
infrequent events (e.g., user behavior [22, 5]), or when lower detection rates
are tolerable (e.g., to profile a binary [22] or capture traces [34]). The miss
probability may also be reduced by targeting events that reference the same
line multiple times, e.g., loops [20] or function calls [35].

3.2 Windowless Paradigm
To understand how some techniques can increase the time resolution by avoiding
windows [27, 36], we identify the two sources of blind spots. Both sources are
an expression of the observer effect, i.e., the attacker perturbs the cache state
by measuring it.

#1: Non-preserving. We refer to a cache measurement as preserving when, in
the absence of an event, the relevant cache state before and after the measure-
ment is equivalent. If the measurement is not preserving, monitoring cannot

86



Prime+Scope: High-Precision Cache Contention Attacks

continue without undoing the changes caused by the measurement. Hence, non-
preserving measurements trigger a repeated preparation phase, which naturally
introduces a period of time in which victim events are missed (cf. Figure 1i).
For instance, the Reload measurement in Flush+Reload is non-preserving,
so it needs to be followed by a Flush, and events occurring at the beginning of
the Flush are missed [20, 14]).

#2: Non-concurrent. We refer to a cache measurement as concurrent when
it detects events that temporally overlap with it. Depending on the degree of
overlap between event and measurement, an event coinciding with measurement
j may be detected during measurement j or j+1, but will not be missed, roughly
speaking. For instance, the Reload in Flush+Reload is non-concurrent, as
events occurring right before or during the Reload are missed [20].

Non-preserving measurements cannot be concurrent, as the necessary prepa-
ration phase erases all relevant state changes, rendering them unobserved.
Non-concurrent measurements, even if they are preserving, are a source of blind
spots, resulting in the need for a waiting interval to obtain the desired detection
accuracy. It should also be noted that measurements can be concurrent on one
processor and non-concurrent on another (e.g., Flush, cf. Section 6.1).

Going Windowless. Cache measurements that are preserving and concurrent
can be performed back-to-back while maintaining their detection accuracy. As a
result, they enable a windowless paradigm that maximizes their time resolution.
This paradigm first prepares the relevant cache state, and then continuously
measures it until an event is observed. Only upon detection of an event, the
preparation phase is repeated to continue monitoring for events.

In Prime+Abort [27], the cache measurement occurs implicitly, through
the TSX abort. Hence, it is preserving and concurrent, and has a natural
windowless instantiation (cf. Figure 1ii-F). Although it is advertised as a dis-
tinguishing feature for Prime+Abort, other cache attack techniques can also
avoid intermittent wait stages.

Van Bulck et al. [36] demonstrate a windowless Flush+Flush [23] (cf.
Figure 1ii-G). On some platforms, Flush measurements are non-concurrent (cf.
Section 6.1). If the detection accuracy is unsatisfactory, one can resort to a
windowed instantiation, as in Figure 1i-D.

We note that even Prime+Probe can be windowless [37] (cf. Figure 1ii-H),
provided that the Probe measurement does not access more congruent addresses
than the associativity W of the target structure. Indeed, it is preserving (if
all W lines are simultaneously in the target structure, they will still be after a
repeated access) and concurrent (an event will cause a miss on at least one of
the attacker’s lines at some point, regardless of overlap.)

87



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Time Resolution. The advantage of windowless techniques is that their time
precision is only fundamentally determined by the throughput of the measure-
ment phase. Therefore, the duration of the preparation phase is of secondary
importance for the resolution, as it only needs to be performed right after
detecting an event.

3.3 This Work: Prime+Scope
This work sets out to optimize the resolution of cache-timing attacks, while
maintaining only the basic requirements of cache contention to ensure that the
technique is future-proof and suitable for restricted environments. In particular,
we do not rely on shared memory between attacker and victim, or special ISA or
processor features (e.g., clflush or Intel TSX). We achieve this by organizing
the cache state such that the contention measurement is repeatable, i.e., it is
preserving and concurrent, and optimally short, i.e., it consists of a single cache
access. We call this technique Prime+Scope, and depict it in Figure 1ii-I.
In the following section, we outline its core principles and instantiate it for
different cache hierarchies.

4 Prime+Scope
4.1 Threat Model
The adversary assumed in this work is able to execute unprivileged code on the
same physical processor as a victim program. The attacker code need not be
executed on the same core as the victim code, and the attacker is not assumed
to be able to interrupt or otherwise control the victim program. Furthermore,
we do not assume that attacker and victim have a shared memory region.

4.2 General Description
As described in Section 2.1, modern cache hierarchies comprise different levels.
In what follows, CS denotes the shared and inclusive cache structure in which
contention is to be measured, and CP denotes one of the attacker’s private
caches (e.g., the L1 cache).

Compared to existing cache contention channels, Prime+Scope has two
additional core requirements:

1 The eviction candidate in the shared and inclusive target structure (CS)
can be accurately predicted.

2 Reads served from a lower-level cache (CP ) do not influence the replacement
state of the target structure (CS).

88



Prime+Scope: High-Precision Cache Contention Attacks

VictimAttacker

➠

SCP

CS S

(i) Prime fixes S as the EVC in CS ,
which remains the case for following
Scope operations.

VictimAttacker

➠

CP

CS

(ii) The victim access evicts S (=EVC)
from CS and CP , resulting in high access
latency for S.

Figure 2: Working principle of Prime+Scope

1 Eviction Candidate. When a new line is to be installed into a cache
set, among all available lines (ways) in the set, a chosen one is replaced with
the new line. In this paper, we call that chosen line the Eviction Candidate
(EVC). The candidate is determined by the cache replacement policy, which is
implemented at the cache-set level as a state machine. For instance, the eviction
candidate for the LRU policy is the cache line that has least recently been used.
Though modern processors implement more sophisticated replacement policies,
they are often deterministic [38, 39, 40]. Therefore, specific access patterns can
mold the replacement policy machinery into a state where a chosen cache line
is the eviction candidate [32, 40].

Awareness of the EVC in CS permits to observe contention by only measuring
EVC latency, as a new cache line fill evicts the EVC by definition. However, the
attacker suffers from the observer effect, i.e., measuring the access latency of
the EVC may change it to another line. To make the measurement preserving,
Prime+Scope relies on another common property of multi-level caches.

2 Low-Level Reads. Prior work observed that the replacement state of
inclusive Intel LLCs only depends on memory requests served by the LLC, not
those served by the lower-level caches [39, 41, 40]. Instead of bypassing this
filtering property (e.g., by enforcing L1/L2 misses), our work explicitly relies on
it to make the cache measurement preserving, and thus, overcome the observer
effect.

Prime+Scope. Based on these two key ingredients, we propose Prime+Scope
as a windowless technique to monitor cache contention. It allows an attacker to
monitor victim accesses to a predetermined target address in two steps. The
Prime step serves two purposes, as in Figure 2i. First, it evicts the target
from the CS using an eviction set. Second, it performs the eviction with a
specific access pattern that fixes a chosen line from the eviction set, denoted as
scope line (S), as the EVC in CS (the shared and inclusive high-level structure),
while maintaining its presence in CP (the lower-level caches). Afterwards, the
preserving and concurrent Scope step continuously fetches S from CP , and

89



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

measures the access latency. As it overcomes the observer effect, the relevant
cache state remains intact both in CP and CS after each Scope.

The described cache state is destroyed when the victim accesses the target
address. When this happens, as in Figure 2ii, the newly-allocated target replaces
S, as it is the EVC. Because CS is inclusive of CP , the copy of S is also evicted
from CP . The next Scope will detect this event through a high access latency
to S.

4.3 Instantiation
Cache Hierarchy. For processors with inclusive last-level caches (LLC), such as
the majority of Intel’s desktop CPUs or server CPUs until 2018, the core-shared
and inclusive LLC itself can instantiate CS , and the core-private L1 caches can
instantiate CP . Most Intel servers since 2018 have non-inclusive LLCs. For such
processors, the CD is shared and inclusive [3], and can hence instantiate CS .

Measurement: Scope. On all tested platforms (cf. Section 5), we found that
requests served by CP indeed preserve the EVC of CS . The Scope continuously
measures the access latency of the scope line S (=EVC), and terminates as soon
as the access time exceeds a predetermined threshold, indicating the occurrence
of the event. As in Figure 3, Prime+Scope measurements need to detect
whether one cache line is served from L1, vs. from RAM (inclusive) or LLC
(non-inclusive). In comparison, Prime+Probe measurements must distinguish
"W lines in CS" from "less than W lines in CS".

Preparation: Prime. Prime+Scope is predicated on the existence and knowl-
edge of a memory access pattern that prepares the cache state for repeated,
single-access measurements. Concretely, we are looking for Prime patterns,
consisting of accesses to W different addresses that satisfy the following require-
ments simultaneously:
RA. have high eviction rate (> 99.5%)
RB . install a specific line S as the eviction candidate in CS

RC . keep the line S in CP

Requirement RA is a traditional requirement for cache contention attacks;
otherwise, the victim access might not evict any of the attacker’s lines. Require-
ments RB and RC are unique to Prime+Scope, so we cannot rely on patterns
established in prior work. In particular, we identify the following challenges.

Challenge-LLC: Keeping the EVC in L1. Taken at face value, requirements
RB and RC are contradictory. Assume we want to install line S as the EVC in
CS . While requirement RB suggests to access S less frequently than the other

90



Prime+Scope: High-Precision Cache Contention Attacks

Prime+Probe Prime+Scope
event

no event
event S

no event S

Inclusive L1 L1/L2/LLC RAM
Non-Inclusive L1 L1/L2 LLC

Figure 3: Prime+Probe monitors a full set in LLC (incl.) / CD (non-incl.)
and detects eviction to RAM/LLC. Prime+Scope monitors one line in L1,
and detects eviction to RAM/LLC.

lines in the eviction set, to ensure it becomes the EVC in CS , requirement RC

suggests to access S more frequently than the others, to ensure it is kept in CP .

Challenge-CD: Controlling the EVC Prior work [3] observed that traditional
eviction strategies do not perform well on the CD (RA). This poses a challenge
for Prime+Scope, as controlling the EVC (RB) is strictly harder than only
evicting the target.

5 Finding Efficient Prime Patterns
This section covers the preparation of the cache state such that subsequent
measurements can be performed with a single repeatable cache access. Although
the Prime duration has limited impact on the time precision (cf. Section 3.2),
we opt to implement the Prime step with fast and accurate access patterns. To
find them, we propose PrimeTime, an automated gray-box search methodology.

To understand the nomenclature of Prime patterns, and how PrimeTime
finds them, an example pattern is shown in Figure 4 together with its translation
into a code snippet. It encodes the access sequence of lines in the eviction set,
along with the stride (gap) between indices, and the amount of repetitions.
This snippet uses the first line of the eviction set (evset[0]) as the scope line
S, which becomes the EVC after a successful Prime with the snippet.

5.1 Last-Level Cache (LLC)
Main Idea. The key idea of our solution to Challenge-LLC relies on property
2 . Assume the scope line S to be the first line in the set (line 0). Then,
the Prime patterns comprise accesses to W congruent lines, like other prime
strategies, but accesses to lines 1 to W − 1 are interleaved with accesses to S.
Due to its frequent usage, S is always served from L1, so it keeps its insertion
age in the LLC. The other lines, in contrast, evict each other from L1, and when
they are read from the LLC, their age decreases, making them progressively

91



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Figure 4: Translation of Prime access patterns into code snippets. After a
successful prime, the scope line S=evset[0] is the EVC in the LLC, while
remaining present in L1.

younger. As soon as all other lines become younger than S, the latter is the
EVC in the LLC without ever leaving the L1 cache.

Prime Properties. For each candidate Prime pattern, we assess the eviction
rate (EVr), i.e., the fraction of successful evictions of the target line. More
importantly, we also record the eviction candidate rate (EVCr), i.e., the fraction
of attempts where the target line is evicted, and the line that will be evicted
next is the intended S, and it is still in L1. Finally, we also record the duration,
i.e., the number of cycles to complete the accesses indicated by the pattern.

It is clear that EV Cr ≤ EV r. While the EVr is the success rate of preparing
the cache set for Prime+Probe, the EVCr is the success rate of preparing S
for a continuous Scope. Understandably, prior efficient patterns for Prime+
Probe typically have a low EVCr, because these patterns are oblivious to the
EVC. Hence, good Prime patterns for Prime+Scope differ from those in prior
work.

Methodology of PrimeTime. The high-level description of PrimeTime is
shown in Algorithm 1. It starts with known access pattern templates, e.g., [42],
and mutates them according to given directives. Mutations consist of repeated
access to certain (sub-)patterns, permuting access orders, or interleaving accesses
to S.
To limit execution time, PrimeTime tests patterns in stages, gradually becoming
more restrictive on the patterns that pass to the next stage, both in EVCr and
cycle count. In the first stage, we test each pattern with 10 000 repetitions,
with loosely defined success criteria. Later stages perform up to a million
repetitions, while filtering for the best-performing patterns. A run for a specific
microarchitecture takes approximately one hour under our configuration, but
this can be scaled in either direction (i.e., speed vs. accuracy). Furthermore,
PrimeTime can be extended to cover a larger search space.

92



Prime+Scope: High-Precision Cache Contention Attacks

Algorithm 1 PrimeTime

Output: Prime patterns with high EVCr and low cycle count

1: Patterns ← GenerateAccessPatterns()
2: Patterns ← Mutate(Patterns, with Repeated Access)
3: Patterns ← Mutate(Patterns, with interleaved S Accesses)

. . .

4: Measurements ← TestEviction(Patterns, 10 000 times)
5: Patterns ← Filter(Patterns, Measurements, Highest EVCr 7 000 )
6: Patterns ← Filter(Patterns, Measurements, Fastest 5 000 )

. . .

7: Measurements ← TestEviction(Patterns, 1 000 000 times)
8: Patterns ← Filter(Patterns, Measurements, Highest EVCr 150 )
9: Patterns ← Filter(Patterns, Measurements, Fastest 100 )

10: return Patterns

PrimeTime on Various Processor Generations. As shown in Table 1, Prime-
Time is able to construct effective Prime access patterns on all tested gener-
ations of Intel CPUs, though their duration differs across microarchitectures.
For each CPU, we indicate the target cache and one top-ranking pattern. To
select this pattern, we consider EVCr, worst-case durations (99th percentile),
and whether variants of the pattern are also successful. All patterns shown
achieve >99.9% EVCr. In fact, many patterns exist with similar EVCr.

For Sandy Bridge (2011), the necessary conditions for Prime+Scope still
hold, but the Prime patterns we have found are less efficient. We hypothesize

Table 1: Applicability of Prime+Scope to various CPU microarchitectures,
along with a top-ranking access pattern as discovered by PrimeTime. Each
pattern achieves (median) EVCr of > 99.9% at the indicated (median) cycle
cost.
CPU Year Microarchitecture LLC type CS WCS

Prime+Scope Prime Access Pattern Cycles
Intel Core i7-9700K 2018 Coffee Lake inclusive LLC 12 ✓ R4_S4_P01SS2301233210 1 332
Intel Core i7-7700K 2017 Kaby Lake inclusive LLC 16 ✓ R2_S4_P01SS2SS301230123 1 255
Intel Core i5-7500 2017 Kaby Lake inclusive LLC 12 ✓ R3_S4_P32SS1SS00123 1 074
Intel Core i7-6700 2015 Skylake inclusive LLC 16 ✓ R3_S4_P01SS2SS301230123 1 694
Intel Core i5-6500 2015 Skylake inclusive LLC 12 ✓ R4_S4_P3SS2SS100123 1 266
Intel Core i7-4790 2013 Haswell inclusive LLC 16 ✓ R3_S4_P3SS2SS100123 1 149
Intel Core i5-4590 2013 Haswell inclusive LLC 12 ✓ R2_S1_P01S2S012 1 221
Intel Core i7-3770 2012 Ivy Bridge inclusive LLC 16 ✓ R3_S4_P3SS2SS1032103210 1 517
Intel Core i5-3450 2012 Ivy Bridge inclusive LLC 12 ✓ R2_S1_P2SS10012 1 216
Intel Core i5-2400 2011 Sandy Bridge inclusive LLC 12 ✓ R5_S1_P0S12012 3 708
Intel Xeon Platinum 8280 2019 CascadeLake-SP non-incl. CD 12 ✓ alternating pointer-chase 2 970
Intel Xeon Platinum 8180 2017 Skylake-SP non-incl. CD 12 ✓ alternating pointer-chase 2 750

93



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

that this is because this generation of processors uses the MRU replacement
policy in the LLC [39], for which the insertion age is already young to begin
with (and the PrimeTime strategy works best when the insertion age is old).

Serialization. PrimeTime avoids processor-specific (reverse-) engineering
work. As an alternative to PrimeTime, one can obtain Prime patterns by
handcrafting patterns (e.g., [43, 40, 44]) that leverage on the knowledge of the
exact cache replacement policy, and the interaction between cache levels. In the
end, such a strategy may lead to efficient primes with minimal memory accesses.
However, such handcrafted patterns generally need to serialize accesses [40, 43]
to prevent out-of-order execution from destroying the intended effects. Such
serialization is implemented with pointer-chasing or memory fences, rendering
the Prime patterns slower. PrimeTime avoids serialization by executing on
the target architecture to incorporate hard-to-predict runtime effects directly.
Still, there may exist handcrafted patterns that are more effective than the
unordered patterns found by PrimeTime. However, the patterns obtained with
PrimeTime are sufficient for Prime+Scope.

5.2 Coherence Directory (CD)
To enable Prime+Scope on the coherence directory, we again need a suitable
Prime pattern. Unfortunately, Yan et al. [3] showed that achieving a high
eviction rate with known eviction patterns is hard, especially when limited
to W addresses. For instance, they report that repeated accesses to W = 12
congruent lines require more than 10 iterations to fully prime the CD. This is
Challenge-CD.

Slow Prime patterns, consisting of many accesses, are not a fundamental
problem for Prime+Scope, as the ultimate time resolution is decoupled from
the duration of the Prime (cf. Section 3.2). However, our PrimeTime tool
indicates that such patterns fail to fix the EVC with high accuracy (RB),
prohibiting Prime+Scope.

On the bright side, non-inclusive Intel caches have the advantage that lines
in the CD always reside in one of the lower-level caches, satisfying RC by
design. Thus, what remains is to find a pattern that installs the desired eviction
candidate in the CD (RB). We first cover a slow but universal solution. Then,
we discuss our hypothesis for why traditional patterns do not work well on the
CD, leading to a more efficient Prime pattern that leverages this information.

Fill-Flush-Fill. Prior work has used a fill-flush-fill approach to reset and simplify
the replacement policy state [41, 39, 40]. Transposed to the CD, it would first fill
the CD set, e.g., through many repetitions of an inefficient eviction pattern [3],
flush all lines of the eviction set, and finally load them again in order. We

94



Prime+Scope: High-Precision Cache Contention Attacks

function() {
...
before
operation(secret);
after
...

2
1

before (data or instruction)
after (data or instruction)

(i) Variable-Time Operation

function() {
...
load(array[secret*1024]);
... // other operations
load(array[!secret*1024]);
...

2
1

array[0]
function

(ii) Variable-Time Access

Figure 5: Uses of differential time: 2 - 1

confirm that such patterns successfully prime the CD set (with EVCr >99.9%),
provided that the initial set filling is successful. However, such patterns are
relatively slow. Moreover, the clflush instruction may not be available in
restricted environments (cf. Section 4.1).

CD Replacement Policy. We believe that the poor performance of traditional
eviction patterns on the CD is caused by property 2 . The reason why this effect
is more pronounced for the CD than for inclusive LLCs is the large associativity
of private caches in current non-inclusive Intel hierarchies, and that lines in the
CD are also cached in L1 and/or L2 [3]. If reading such lines does not influence
the replacement state of the CD, many accesses are required for every attacker
line to become younger than the lines to be evicted. Thus, for many access
patterns, the CD behaves like a first-in-first-out (FIFO) queue, irrespective of
the actual replacement policy.

Based on this hypothesis, a straightforward way to prime the CD is to access
W congruent lines that are currently not in the CD. Indeed, we find such an
access pattern to simultaneously achieve a near-perfect EVr and EVCr (the first
element of the set being the scope line S), making it a suitable Prime pattern
for Prime+Scope. On all non-inclusive platforms under consideration, our
successive Primes alternate between two eviction sets of W addresses. As FIFO
is very sensitive to ordering, and insensitive to repeated accesses, we enforce
serialization by using a pointer-chasing approach [45].

6 Case Studies
Micro-benchmarks. Prime+Scope bypasses the observer effect of the cache
contention side channel, and reduces the cache measurement to a single memory
access. Consequently, Prime+Scope is able to monitor victim behavior with

95



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

60100 200 400 1000 10000
0.5
0.6
0.7
0.8
0.9

1

Window Size [cycles]

A
cc

ur
ac

y

FF FR PPc
PPwA PPwB PS

(i) Precision on LLC (Core i5-7500, Kaby
Lake)

100 200 400 1000 10000
0.5
0.6
0.7
0.8
0.9

1

Window Size [cycles]

A
cc

ur
ac

y

FF FR PPc
PPw PS

(ii) Precision on CD (Xeon Platinum
8280, Cascade Lake)

Tech. WL Prepare Measure Resmin Res95

FR ✗ clflush T load T 420 4 350
PPwA ✗ R1_S1_P0 R1_S1_P0 580 2 500
PPwB ✗ R3_S1_P012012 R1_S1_P0 790 4 350
FF ✓ / clflush T 300 300
PPc ✓ / R1_S1_P0 390 390
PS ✓ / load EVC 70 70

(iii) Techniques (LLC). WL denotes
windowless; Resmin and Res95 denote

max. resolution and resolution for 95%
accuracy (cycles)

Tech. WL Prepare Measure Resmin Res95

FR ✗ clflush T load T 440 5 000
PPw ✗ simple ptr-chase simple ptr-chase 300 300
FF ✗ clflush T clflush T 430 1 600
PPc ✓ / simple ptr-chase 210 210
PS ✓ / load EVC 80 80

(iv) Techniques (CD). WL denotes
windowless; Resmin and Res95 denote

max. resolution and resolution for 95%
accuracy (cycles)

Figure 6: Accuracy and resolution as function of window size

96



Prime+Scope: High-Precision Cache Contention Attacks

high temporal precision, even asynchronously, without having to cope with
missed accesses. Section 6.1 quantifies this precision and compares it to other
techniques, and Section 6.2 characterizes the influence of noise.

Differential Time. By scoping multiple sets simultaneously, Prime+Scope
can estimate the temporal separation between two (or more) events with fine
precision. Figure 5 shows two classes of timing leaks for which Prime+Scope
is particularly well-suited.

The first class is that of variable-time operations, where the duration of an
operation depends on a secret value. Such a code pattern encodes the secret
in the time difference between memory accesses before and after operation,
as in Figure 5i. Several attacks exploit leakage of this kind, e.g., for a secret-
dependent number of loop iterations (e.g., [46]), or non-constant-time arithmetic
(e.g., modular reduction [16, 17]). Cache attacks can only decode the secret
if their precision is sufficient to detect the secret-dependent time difference of
operation. Often, however, the resolution is too low, prompting the use of
performance degradation of the victim [14, 16, 17].

The second class is that of variable-time accesses, where memory accesses
occur at a secret-dependent time (or, as a special case, in a secret-dependent
order [47]). In Figure 5ii, the elements of array are always accessed, but the
time relative to the start of function depends on a (binary) secret. Again, the
attack needs sufficient precision to detect the secret-dependent time differences.

In this paper, we focus on variable-time access leakage. Section 6.3 demon-
strates a high-capacity covert channel that works with such temporal encoding
of the data. In Section 6.4, we show that AES T-tables, a well-studied cache
attack target, also exhibits variable-time access leakage. Too fine-grained to be
properly harnessed by prior techniques, with Prime+Scope, we exploit it to
significantly reduce the number of traces needed for the attack.

Congruence Detection. The repeatable measurement of a single cache line
is also useful to determine congruence in the target cache. In Section 6.5, we
demonstrate this capability with a simple, efficient and portable eviction set
construction methodology.

6.1 Temporal Precision
We now quantify the time resolution of Prime+Scope (PS) to detect cross-core
asynchronous events for an inclusive LLC and CD. For reference, we include the
most prominent techniques; Prime+Probe (PP) for cache contention, i.e., the
most comparable technique, and Flush+Reload (FR) and Flush+Flush
(FF) for shared memory.

97



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

For Prime+Probe, the experiment includes windowed (PPw) and win-
dowless (PPc) variants, where we consider two windowed versions for the LLC
(PPwA and PPwB), as in Figure 6iii. For the CD, we use the accurate eviction
patterns as discovered in Section 5.2, though they were unknown prior to this
work.

On our non-inclusive processors, the Flush+Flush side channel also exists
although inverted, i.e., lines present in the hierarchy have lower flush latency
than those that do not. Moreover, the difference is quite large (200 vs. 330
cycles), unlike the subtle difference on our inclusive testbed. Prior work [48]
reports that flushing an uncached line on multi-socket Intel systems triggers an
access to memory for cross-socket coherence, which would clarify this behavior.

The measurement thresholds are calibrated dynamically and individually for
every technique, based on timing histograms and the threshold selection regime
with the best results. We note that some techniques (e.g., Flush+Reload,
Prime+Scope) are less sensitive to the specific threshold value than others
(e.g., Prime+Probe).

Methodology. We consider the following micro-benchmark for detecting asyn-
chronous events. The event to be detected is an access to a specific cache line,
by a process pinned to another core. To model an asynchronous event, the
process first yields the CPU (sched_yield), before waiting for a randomly
sampled number of nops. Then, the event is triggered with probability 1/2.

We consider the instances listed in Figure 6iii and Figure 6iv. All instances
start from an already-prepared state, using the top-ranking Prime from Table 1
for both Prime+Probe and Prime+Scope. The windowless instances (FF,
PPc, PS) perform back-to-back measurements, so the preparation phase does
not need to be repeated (indicated with /). In contrast, the windowed instances
(FR, PPwA, PPwB) comprise a measurement, a preparation phase, and a
waiting period until the end of the window. All instances run iteratively, and
they terminate either when an event is detected, or when there was no event
and the random process has terminated.

This experiment is repeated for 1 000 runs of 10 000 events for each window
size and each technique, and the global accuracy (true positives and true
negatives divided by total) is recorded. We also record the fundamental maximal
resolution (i.e., the minimal window size that is able to contain one measurement
iteration), as well as the maximal resolution that delivers an accuracy of 95%.

Note that this micro-benchmark serves to quantify, for each technique, the
maximal probing resolution for reliable cross-core cache event detection. It
should not be interpreted as a comparison of these techniques in a general
setting, where more error sources are at play that are not captured here (e.g.,
noise). However, a poor resolution in this experiment implies a poor resolution
in practice.

98



Prime+Scope: High-Precision Cache Contention Attacks

Also, the experiment assumes that the initial cache preparation is already
successfully performed, which may paint an optimistic picture for windowed
techniques. For instance, for the CD, the EVr of a single unordered probe
of W lines is quite low [3]. Hence, a windowed Prime+Probe (PPw) has
lower accuracy than in this experiment, due to false negatives incurred by the
imperfect EVr, but its temporal resolution is adequately estimated by this
experiment.

Results. For both the LLC (Figure 6i) and the CD (Figure 6ii), the resolution
of Prime+Scope can be seen to tower above the other techniques, i.e., around
70 cycles or 25ns, while correctly detecting the majority of events (>98%).
Figure 6iii and Figure 6iv indicate the maximal resolution (both fundamentally
and for 95% accuracy).

As expected, windowed techniques have poor accuracy for small window
sizes, with many events landing in blind spots (i.e., false negative errors). This
is especially apparent for Flush+Reload, where small-window instances miss
almost all events (cf. [20, 14]).

The resolution for windowless Prime+Probe (PPc) is already fairly high
(390 cycles for the LLC, and 210 cycles for the CD). In contrast to typical
applications of Prime+Probe [45, 1, 2], the windowless paradigm decouples
Prime and Probe. This permits to optimize the Prime stage for high EVr,
and Probe stage for speed.

The inflated time difference for Flush+Flush on the CascadeLake server
makes it more accurate than Flush+Reload for all window sizes. However, the
accuracy increases with the window size, indicating that the Flush measurement
on this platform has a blind spot, i.e., it is not concurrent (cf. Section 3.2).

6.2 Susceptibility to Noise
Like Prime+Probe, Prime+Scope is susceptible to noise resulting from
activity in the targeted cache set, other than the event which is to be monitored.
This limitation is fundamental to the cache contention leakage mechanism. It
is natural to ask whether the more precise Prime patterns for Prime+Scope
make it more fragile in the presence of noise. We explore it in the following
experiment.

We consider two threads pinned to different cores of an Intel Core i7-7700K
(Kaby Lake, 16 ways), where one thread monitors the other’s memory accesses
under different levels of noise. The stress tool is used to generate heavy
memory load on one or more other cores (e.g., as in [11]). One thread accesses a
predetermined address periodically (every 10 000 cycles), as ground truth, while
the other thread continuously monitors the cache set for events, and records
the timestamps at which the events are detected. Timestamps are obtained

99



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Method Stress Correct Miss Multi

PS
0

98.24 1.44 0.32

PPP S
99.42 0.45 0.12

PPCST
98.72 1.15 0.13

PS
1

79.71 2.35 17.94

PPP S
83.83 0.54 15.63

PPCST
81.74 0.56 17.70

PS
5

78.38 2.42 19.20

PPP S
82.80 0.68 16.51

PPCST
81.94 0.00 18.06

Pattern EVr EVCr Duration Precision

PS R3_S4_P01SS2SS301230123 100% 99.9% 1810 70
PPP S R2_S4_P01SS2SS301230123 100% 99.9% 1255 1170
PPCST R2_S1_P01 100% NA 1190 700

Figure 7: Distribution of time slots along correct, miss and multi categories
for Prime+Scope and Prime+Probe (averages over 200 runs of more than
25 000 timeslots). Stress indicates the amount of stress workers, pinned to
different cores, that are active in the background. The properties of the Prime
patterns are as follows:

using the CPU’s time stamp counter, which is synchronized across cores. After
execution, the collected timestamps are analyzed to evaluate the detection
accuracy of the techniques.

In the ideal case, only one event is detected in each time slot, being the
ground-truth periodic access. In the experiment, three cases are distinguished:
correct when only one event is detected, and it was detected right after the
event occurred; miss when the ground-truth event was not detected in the
time slot (false-negative error); and multi when events were detected that did
not correspond to the ground-truth access (false-positive error). If a time slot
contains both error types, which is uncommon, it is classified as multi.

Prime+Scope (PS) is compared with two windowless Prime+Probe
instances. As indicated in Figure 7, the first one (PPP S) inherits the Prime
access pattern of Prime+Scope. The second one (PPCST ) uses a custom
Prime+Probe pattern, which is also obtained with PrimeTime, but optimized
for EVr instead of EVCr.

100



Prime+Scope: High-Precision Cache Contention Attacks

For the Prime+Probe instances, the indicated Prime is repeated continu-
ously and serves both as preparation (where duration is the number of cycles
needed to prepare the cache after an event) and measurement (where precision
is the number of cycles between successive measurements in the absence of an
event). Note that PPP S performs much more accesses than PPCST , which is
almost completely hidden in the preparation stage in the shade of cache misses,
but is clearly visible in the measurement precision. As in Figure 1ii-H, the
Prime right after detection of an event is ignored, as its execution time may
still be affected by that event.

A naive implementation of Prime+Scope performs the Prime just once for
every detected event. However, suppose that the Prime is unsuccessful in fixing
the EVC, e.g., due to noise. This will blind the following Scope operations, as
they may be fast even if some elements of the cache set have been evicted. To
overcome this issue, the Prime step is repeated when no events were detected
within a chosen period (in this experiment, roughly 12 000 cycles).

Results For each technique and noise level, Figure 7 indicates the distribution
of time slots along correct, miss and multi rates. This micro-benchmark provides
a rough indication of how noise translates to false-positive and false-negative
errors for the different windowless techniques. We can draw the following
conclusions:
- The miss rates of Prime+Scope are slightly (a few p.p.) higher than Prime+

Probe. The main cause of such false-negative errors are accesses during the
preparation phase of the attack, which may result in an imperfectly prepared
set [40]. Hence, the observed behavior is clarified by imperfect preparation
affecting the EVCr slightly more than the EVr. If high noise levels are to
be expected, Prime+Scope fares well with an upwards correction of the
Prime repetitions compared to the output of PrimeTime (e.g., as in this
experiment, where R2_* → R3_*).

- In terms of multi rates, all instances are comparable. The main cause of such
false-positive errors is noise during the measurement phase, evicting the EVC.
As this leads to high access latencies for both Probe and Scope, this source
of errors is expected to affect Prime+Scope and Prime+Probe equally.

6.3 Cross-Core Covert Channel
To show that Prime+Scope can discern fine-grained temporal cache activity,
we build a high-capacity cross-core covert channel based on variable-time access
leakage (cf. Figure 5ii). It temporally encodes m-bit symbols by performing a
memory access in one of 2m slots, where slots may be as short as 80 processor
cycles.

As a representative sample, we implement it on the LLC of a Kaby Lake

101



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Figure 8: Covert Channel Operation (m = 3 bits per symbol).

processor, and on the CD of CascadeLake-SP. For our proof-of-concept imple-
mentation, we assume a synchronized transmitter and receiver that have agreed
on a contention set (e.g., as in [49, 3, 50]).

Figure 8 visualizes the working mechanism of the covert channel, as well
as its defining parameters (duration of preparation stage, transmission slots,
and transmitter-receiver offset). First, the receiver primes the set. Then, the
transmitter sends an m-bit symbol M by accessing a congruent line in slot
number i = M . At the same time, the receiver scopes the set every SLOT cycles,
decoding M as the slot number in which the scope line S is evicted.

Optimizations. We perform a few modifications to improve the channel band-
width. Instead of the canonical encoding, we encode the bitstream into m-bit
symbols with reflected binary Gray codes to ensure that off-by-one symbol
errors only lead to single-bit errors.

For the LLC channel, the receiver uses the Prime patterns of Section 5.1.
We find that if the transmitter flushes the line right after accessing it, it slightly
speeds up the prime for the receiver.

For the CD channel, the Prime stages consist of alternating pointer chases
(cf. Section 5.2). To amortize the latency arising from serialization, four sets are
primed simultaneously with their accesses interleaved (e.g., as in [51]). After the
combined Prime, there are four rounds of 2m slots, where each round encodes
m bits.

Evaluation. Figure 9 gives capacity and error rate as a function of bandwidth,
and summarizes the parameters for which the LLC- and CD-based channels
obtain peak capacity. Respectively, the capacities are 3.5 Mbps and 3.1 Mbps,
which is much higher than Prime+Probe on the LLC (e.g., 500 Kbps at 1%
bit error rate [23]). Furthermore, they are in the same order of magnitude
as state-of-the-art stateless channels without shared memory, such as Pessl
et al. [49] (DRAM row buffer contention, 2.1 Mbps capacity) and Paccagnella
et al. [50] (LLC ring contention, 4.1 Mbps capacity).

To our knowledge, the only other covert channel using the CD is due to

102



Prime+Scope: High-Precision Cache Contention Attacks

1.5 2 2.5 3 3.5 4 4.5 51
2
3
4

Bandwidth (Mbps)

C
ap

ac
ity

(M
bp

s)
Capacity (KBL) Capacity (CXL)

0
0.05
0.1
0.15
0.2

Er
ro

r
R

at
e

Bit Error Rate (KBL) Bit Error Rate (CXL)

Platform CS m Capacity PREPARE OFFSET SLOT

Core i7-7500 (KBL) LLC 4 3.5 Mbps 1 400 90 100
Xeon Pl. 8280 (CXL) CD 3 3.1 Mbps 4 750 125 100

Figure 9: Covert Channel Capacities and error rates for the Kaby Lake (KBL)
and CascadeLake-SP (CXL) platform. For the peak capacities, the configuration
in the following table are used, where PREPARE, OFFSET and SLOT are in cycles.

Yan et al. [3], with a bandwidth of 0.2 Mbps (error rate not reported). The
order-of-magnitude capacity improvement of our channel stems from both a
fast and efficient Prime pattern (cf. Section 5.2), and the precision of Prime+
Scope (cf. Section 6.1).

As the goal is to characterize the temporal precision of Prime+Scope, we
limit the study of this covert channel to synchronized parties on idle systems. In
practice, further engineering challenges need to be overcome (e.g., as undertaken
in [1, 10, 11]).

6.4 Side-Channel Attack on AES
We now revisit the seminal first-round known-plaintext attack on the T-table
implementation of AES [8], a standard benchmark for cache attack techniques
(e.g., [23, 27, 52]). The time precision of Prime+Scope allows a novel attack
technique against AES, based on variable-access time leakage (cf. Figure 5ii),
rather than traditional access leakage. As it can learn more information from
each encryption, much fewer traces are needed to extract the secret. Although a
windowless Prime+Probe can also absorb some of this information, Prime+
Scope requires 10-70x fewer traces. We first give a high-level outline of the
traditional attack (for details, refer to [8, 45]). Like prior work, we attack
OpenSSL 1.0.1e (or similar).

Traditional Attack The implementation features four precomputed tables
Tej , of 16 cache lines each. The attacker monitors accesses to such table
lines Tej [M ] which, on CPUs with 64-byte cache lines, leak the upper four bits
(nibble) of every key byte ki. We implement this attack with Prime+Probe (for

103



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

comparison) and Flush+Reload (for reference), where the attacker prepares
the cache, triggers an encryption with known plaintext, and measures afterwards.
For plaintexts where ⌈pi⌉4 = ⌈ki⌉4 ⊕M , cache line Tei mod 4[M ] is accessed in
the first round, and hence, in 100% of encryptions. For other pi, it is accessed
in 92.5% of encryptions, so each monitored Tej [M ] carries information in 7.5%
of encryptions.

Variable-Time Access: Prime+Scope. Consider the code snippet in Fig-
ure 10. Indeed, not only the access to a table encodes information, but also
the encryption round in which it happens. We now show that, through its
time precision, Prime+Scope is able to capture such leakage. Information
is obtained through differential time between the start of the AES_encrypt
function and one or more table entries.

We use the cache attack as an oracle for accesses to table entries during the
first AES round. We spin up a thread for each monitored line (including the first
instruction cache line of AES_encrypt). The adversary triggers encryptions,
and each thread records the timestamp at which the access is detected (if any)
for the monitored table entry. Then, the differential times are used to score the
key nibble hypotheses. The larger the differential time, the larger the penalty
for the key nibble, as the probability is lower that it corresponds to a first-round
access. For a table access in the first round, we observe the differential time to
be around 200-300 cycles.

An advantage of this attack is that every trace carries information for each
monitored table entry, as opposed to only 7.5% for the traditional first-round
attack. Note that a single-threaded Prime+Scope can also record differential
times, but the temporal resolution decreases linearly with the number of lines
scoped in one thread.

Variable-Time Access: Prime+Probe? For comparison, we explore whether
Prime+Probe can also learn from the differential time. To capture the
maximal performance of Prime+Probe, we consider an optimal, windowless
configuration; the Prime is the same as for Prime+Scope, and the Probe

void AES_encrypt(...) {
... // s0-s3 contain p_i xor k_i
// round 1:
t0 = Te0[s0>>24] ^ Te1[(s1>>16) & 0xff]

^ Te2[(s2>>8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];
t1 = ... ; t2 = ...; t3 = ...; // similar to t0
... // rounds 2-10 (similar to round 1)

2
1 AES_encrypt

Te0/Te1/Te2/Te3

Figure 10: Variable-time access leakage for AES

104



Prime+Scope: High-Precision Cache Contention Attacks

1 1.5 2 2.5 3 3.5 4 4.5 5
100

1,000

10,000

100,000

Table entries monitored

En
cr

yp
tio

ns
PP FR
PS PPv2

Figure 11: Median encryptions for AES T-tables (bars indicate 10-90th per-
centiles). Comparison of Prime+Scope (PS) with traditional Prime+Probe
(PP) and Flush+Reload (FR), as well as differential-time Prime+Probe
(PPv2).

is the simple, unordered traversal of the set (pattern R1_S1_P0). According
to Figure 6iii), we expect a precision of approx. 400 cycles (cf. 70 cycles for
Prime+Scope).

Results. Figure 11 presents the results on the LLC of an Intel Core i7-7700K
(Kaby Lake, 16 ways). It shows the number of encryptions needed to mount the
full first-round attack, which recovers 64 of the 128 key bits. We consider the
key nibble found as soon as the hypothesis converges (i.e., it reaches the correct
value and does not diverge from it). We perform 1 000 iterations and indicate
the median and 10th and 90th percentiles to convey the variance. Note that
these results are obtained without degrading victim performance (other than
indirectly through the cache sets that are monitored).

Prime+Scope retrieves the secret information with fewer traces (between
5-25x) than the traditional Prime+Probe. The differential-time Prime+
Probe is also able to capture some of the temporal information, but again more
slowly, with more traces than Prime+Scope (10-70x). When only a single
table entry is monitored in every encryption, we find that it fails to recover the
secret even with as many as 100 000 traces, which may indicate that the timing
differences are too small to be distinguished by Prime+Probe.

6.5 Finding Congruent Addresses
Cache contention attacks require the adversary to find eviction sets, i.e., sets of
congruent addresses in the target cache. This practical challenge has been inves-
tigated thoroughly [1, 2, 27, 26, 3]. However, the principles underlying Prime+
Scope enable an efficient congruence test, resulting in a faster and simpler

105



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

routine that, counter-intuitively, requires fewer platform-specific parameters.

Algorithm 2 Eviction Set Construction

Input: TARGET: address for which an LLC eviction set is desired
Output: ES: eviction set

1: ES ← empty list
2: length ← 0
3: while length < LLC_WAYS do
4: access(TARGET)
5: do
6: GUESS ← a line possibly congruent to the TARGET
7: access(GUESS)
8: while access(TARGET) is fast
9: ES[length++] ← GUESS

10: end while

Algorithm: LLC. The foundation of the proposed LLC eviction set construction
routine is given in Algorithm 2. It repeatedly measures the access latency of the
TARGET address and, between each measurement, accesses a guess. As TARGET
is continuously accessed, it is always served from the L1 cache, which does not
influence its LLC replacement state. Guesses that turn out to be congruent
with the TARGET are installed in the LLC, and each time this happens, the EVC
in the LLC changes. After enough congruent guesses, the TARGET becomes the
EVC. The next congruent guess then evicts TARGET from the LLC and, due to
the inclusion property, also from the private caches. Therefore, the next access
to TARGET is slow, indicating the congruence of the latest guess. The attacker
repeats this procedure until she has obtained enough congruent addresses.

To speed up the routine, between lines 4 and 5 in Algorithm 2, we access
already-obtained congruent addresses to accelerate TARGET becoming the LLC
eviction candidate. Thus, the number of inner-loop iterations is expected to
decrease as the algorithm proceeds.

To increase the robustness, we test whether the resulting set successfully
evicts the TARGET. If not, an extra address is found, and the test is repeated. The
number of failures until the test succeeds reveals the number of false positives
in the set, which can be removed through a short reduction phase, akin to prior
work [1, 26, 3].

The algorithm is identical for huge and small virtual memory pages, but the
availability of huge pages speeds up the runtime significantly, as the guesses are
more likely to be congruent due to the increased control over physical address
bits [1, 26].

106



Prime+Scope: High-Precision Cache Contention Attacks

Table 2: Runtime (median) and accuracy (%) for eviction set construction
(1 000 runs for randomly selected targets)

Processor Vila et al. [26] Ours
Cache Huge∗ Small∗ Huge Small
Skylake 165.2 ms 316.3 ms 0.25 ms 2.80 ms
12 Way LLC 99% 100% 99% 99%
Skylake 113.2 ms 643.8 ms 0.55 ms 4.03 ms
16 Way LLC 98% 100% 96% 100%
Skylake-SP NA NA 3.15 ms 35.40 ms
12 Way CD NA NA 100% 93%

∗ Initial set size for 12
16 Way LLC is 65

90 for huge pages, 3500
4000 for small.

Algorithm: CD. On non-inclusive Intel caches, the set index mapping for the
LLC and CD is identical. Hence, eviction sets constructed for one may be used
for the other. Finding congruent addresses through contention on the CD is
challenging, as congruence in the CD implies congruence in L2 [3], and TARGET
may be evicted due to contention on L2, leading to false positives. Thus, like
prior work [3], we perform the construction on the LLC.

The routine is similar to in Algorithm 2. However, recall that the LLC is
non-inclusive, so the memory accesses on lines 4 and 7 do not guarantee the
installation of the TARGET and the GUESSes in the LLC. We replace them with
joint accesses by the attacker thread and a helper thread on another CPU core,
as we observed that accesses from two cores place a copy of the line into the
LLC1.

Platforms. We tested the eviction set construction on all the machines in
Table 1, as we had to obtain eviction sets for PrimeTime. To compare with
other work, we perform a detailed comparison on the Skylake microarchitectures
in Table 2. Apart from the differences for inclusive and non-inclusive LLCs and
a parameter for LLC associativity, it requires no adaptation to the processor.

Comparison. Vila et al. [26] study eviction set construction in detail, and
propose a linear-time algorithm that improves over the quadratic-time base-
line [1]. These routines iteratively remove one or more lines from a big initial
set, measuring whether the residual set still evicts the target. In contrast,
Algorithm 2 starts from an empty set, and adds congruent lines to it. It over-
comes practical problems identified by previous works, such as the dependence

1For more information, we refer the reader to
https://www.github.com/KULeuven-COSIC/PRIME-SCOPE/evsets.

107



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Table 3: Classification of cross-core cache attack techniques in terms of prereq-
uisites and features

Attack
Technique

Mechanism Prerequisites Features

Leakage
Source

Spatial
Granularity

No Shared
Mem.

No
clflush

No
TSX

Window-
less

Measure
Size

Multi-
Target

Shown
on CD

Flush+Reload [20] load latency line ✗ ✗ ✓ ✗ 1✓ ✓ ✓
Flush+Flush [23] load latency line ✗ ✗ ✓ ✓ 1✓ ✓ ✓
Evict+Reload [22] load latency line ✗ ✓ ✓ ✗ 1✓ ✓ ✓
Reload+Refresh [40] repl. state line ✗ ✗ ✓ ✗ 2✓ ✓ ✗

Prime+Probe [1, 2] contention set ✓ ✓ ✓ ✓ W✗ ✓ ✓
Occupancy [6] contention none ✓ ✓ ✓ ✗ huge✗ ✗ ✓
Prime+Abort [27] TSX abort set ✓ ✓ ✗ ✓ ∅✓ ✗ ✗

Prime+Scope contention set ✓ ✓ ✓ ✓ 1✓ ✓ ✓

on replacement policies (and their adaptivity) [26], TLB thrashing [53], and
hardware prefetchers [45]. Similar to prior techniques [1, 26, 3], it does not
require knowledge of the slicing function.

Because our implementation does not require any preparation steps, such as
organizing the memory space in a linked list, or selecting a suitable starting
set, we take into account the total execution time of the construction routine,
which includes the time spent for failed preparation steps in addition to the last
successful reduction step. As shown in Table 2, our implementation executes up
to 660x faster than the one by Vila et al. [26], while achieving the same success
rate (where success is defined as a set of W addresses that consistently evicts
the target). Furthermore, the default configuration is adequate for successful
execution on all tested Intel processors, while containing only a few configuration
parameters.

For non-inclusive caches, only the initial study by Yan et al. [3] describes how
to find LLC/CD eviction sets. They adapt the congruence test of earlier work [1]
to overcome the challenges provided by non-inclusive LLCs. Compared to ours,
their routine has the advantage of being single-threaded. As performance
metrics are not provided in [3], we are unable to directly compare our work
with theirs. However, it has quadratic complexity, and is so far unsuccessful
when huge pages are not available. Even if their routine is adapted to linear
time (e.g., [26]), we expect our algorithm to outperform it, in accordance with
the findings for inclusive caches.

7 Related Work

7.1 Classification of Attack Techniques

Complementing the quantitative study in Section 6, Table 3 positions Prime+
Scope with respect to existing cross-core cache attack techniques on the basis
of prerequisites and features.

108



Prime+Scope: High-Precision Cache Contention Attacks

Prerequisites The most basic requirement is co-tenancy, where the attacker
can run unprivileged code (native or otherwise) on the same physical machine as
a victim. As long as both parties share at least one cache level, an attacker can
measure contention on shared cache resources (as is done for Prime+Probe
and Prime+Scope).

Some techniques are predicated on additional capabilities, such as shared
memory with the victim, the presence of a clflush instruction, or special
processor features like Intel’s TSX. These extra capabilities can increase the
power of the technique, e.g., in terms of spatial resolution or reliability. However,
the additional prerequisites limit the applicability of these techniques. For
instance, shared memory is discouraged in multi-tenant clouds, and clflush
may not be available to code that is not running natively on the system (e.g.,
in the browser). Intel TSX is not available on all Intel CPUs and, for those
where it is available, Intel has added support to disable it [29] in response to
recent transient execution attacks [54, 55].

Features. The most relevant features to this work are whether a technique
can be instantiated in a windowless paradigm, and the number of cache accesses
for each measurement.

In terms of spatial granularity, techniques based on shared memory can
infer accesses to specific cache lines, whereas cache contention attacks are
fundamentally limited to set-granularity. Prime+Scope belongs to the latter
category. Table 3 also indicates which techniques have been shown on CDs of
non-inclusive LLCs [3].

Measuring multiple events enriches the information content of the channel
and is an essential requirement to record differential times (cf. Section 6).
Prime+Abort cannot monitor multiple events while maintaining the ability
to distinguish between them [27]. Other techniques can do so, but may have to
take the influence of spatial hardware prefetching into account [56, 22, 32].

Other Properties Some techniques are tailored to overcome specific system-
level constraints. Cache occupancy attacks [6] forego the search for congruent
addresses and instead measure contention on a cache-sized buffer. This makes
them amenable for deployment in (very) restricted environments [57], at the
cost of all spatial granularity and significant time precision. Some techniques
offer stealth against runtime detection [23, 40], or bypass software-based coun-
termeasures with indirect cache accesses [52]. Exploring Prime+Scope in
these system models is beyond the scope of this work.

109



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

7.2 Cache Attacks and Replacement Policies
Cache replacement policies were long perceived as obstacles, leading to tech-
niques that minimize their influence (e.g., double pointer-chasing [45] or black-
box eviction strategies [42]). However, enabled by reverse-engineering ad-
vances [38, 40, 41, 39], some works use replacement properties to the advantage
of the attacker.

Same-Core. Xiong and Szefer [43] use the PLRU policy of the L1 cache to
leak information between processes through LRU states. Recently, Röttger and
Janc [13] use it to amplify the time difference between presence and absence of
a speculative memory access.

Cross-Core. Reload+Refresh [40] detects accesses to a shared address by
monitoring changes in the EVC. In this context, our efficient Prime patterns
may be useful to prepare the EVC. Wang et al. [32] probe the L2 EVC to limit
the impact of the aggressive hardware prefetcher on low-end, in-order Intel
CPUs. Their Prime pattern consists of 2W ordered accesses (all cache misses),
making it comparatively slow. Briongos et al. [44] detect the start of a victim
routine and exploit LLC replacement to evict prefetched lines at the right time.
As Prime+Probe lacks the required precision, they rely on Prime+Abort
for detection. Future work should investigate the use of Prime+Scope to
remove the dependency on Intel TSX.

To enable Rowhammer attacks without flushing, Gruss et al. [42] find efficient
eviction strategies for unknown replacement policies. Aweke et al. [24] develop a
pattern predicated on the Sandy Bridge MRU policy, which De Ridder et al. [51]
modernize and improve for browser-based Rowhammer in the presence of DRAM
mitigations.

8 Limitations and Countermeasures
Requirements. Prime+Scope does not work on processors for which the key
properties (cf. Section 4) do not hold. For instance, it fails when the shared
structure CS has a random replacement policy (as it eliminates predictability of
the EVC), or if the lower-level caches do not act as a filter for CS (as it eliminates
repeatability of the measurement). We believe these two properties are the only
anchor points for the deployment of countermeasures to reduce Prime+Scope
to Prime+Probe. However, invalidating these properties may adversely affect
multi-level cache performance.

Leakage Types. As demonstrated in Section 6, Prime+Scope is able to
extract information from fine-grained timing leaks. However, if time differences

110



Prime+Scope: High-Precision Cache Contention Attacks

are more coarse-grained (e.g., RSA square-and-multiply [20, 1]), the increased
precision of Prime+Scope does not directly lead to a more efficient attack.
Still, we note that the windowless nature of Prime+Scope eliminates false-
negative errors due to overlap between measurement and event, which may help
to reduce the number of required observations to retrieve the secret.

High-Frequency Events. Recall that for Prime+Scope (and Prime+Abort
and Prime+Probe), even for windowless instances, the cache state needs
to be prepared after every detected event. If the event rate is very high, i.e.,
when the temporal separation of accesses to the same address is in the order
of the Prime duration, the preparation step becomes dominant for the time
precision. We note that, although Prime+Scope places more demands on
cache state preparation than its counterparts, the Prime patterns obtained
with PrimeTime are still fairly competitive, with most of them in the range of
1000-1300 cycles (cf. Table 1).

Generic Countermeasures. Flush+Reload and Flush+Flush can be
thwarted by disallowing shared memory across security boundaries, but coun-
termeasures to mitigate the cache contention channel are far more invasive.
However, in recent years, this defensive avenue has attracted attention in
the research community. The main lines of work are based on isolation, i.e.,
partitioning the cache along isolated portions (e.g., [58, 59, 60, 61, 62]), or
randomization, i.e., obfuscating interference by modifying the set index mapping
(e.g., [63, 64, 65, 66, 67, 68, 69]). By strengthening cache contention attacks,
our work motivates further research in this direction.

9 Conclusion
This paper introduced Prime+Scope, a high-resolution primitive to measure
contention on shared cache resources. It can target last-level caches and direc-
tories alike, and we found it to apply to all tested Intel processors of the last
decade. Roughly speaking, Prime+Scope is a high-resolution successor to
Prime+Probe, assuming the same attacker capabilities that make the latter
so widely applicable. The fast and repeatable Scope measurement essentially
optimizes the resolution of cache contention attacks, delivering a cross-core time
precision that even flush-based techniques cannot provide.

We believe that Prime+Scope is a valuable addition to the microarchitec-
tural attack toolbox. We quantitatively evaluated its properties, and illustrated
them with a high-bandwidth covert channel, a new fine-grained attack on AES
T-tables, and a simple, efficient, and portable routine to construct eviction sets.

111



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Acknowledgments
We thank the anonymous CCS 2021 reviewers, as well as Frank Piessens and
Márton Bognár, for their valuable feedback. This research is partially funded by
the European Research Council (ERC - #695305) and the Flemish Government
through the FWO project TRAPS. It was also supported by the CyberSecurity
Research Flanders (#VR20192203). Additional funding was provided by a
generous gift from Intel. Antoon Purnal is supported by a grant of the Research
Foundation - Flanders (FWO).

References
[1] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache

side-channel attacks are practical,” in IEEE Symposium on Security and
Privacy (S&P), 2015.

[2] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies VM sandboxing – and its application to
AES,” in IEEE Symposium on Security and Privacy (S&P), 2015.

[3] M. Yan, R. Sprabery, B. Gopireddy, C. W. Fletcher, R. H. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in IEEE Symposium on Security and Privacy (S&P),
2019.

[4] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of
my cloud: Exploring information leakage in third-party compute clouds,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2009.

[5] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The spy
in the sandbox: Practical cache attacks in javascript and their implications,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015.

[6] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in USENIX Security Symposium, 2019.

[7] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“Netcat: Practical cache attacks from the network,” in IEEE Symposium
on Security and Privacy (S&P), 2020.

112



Prime+Scope: High-Precision Cache Contention Attacks

[8] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of AES,” in Cryptographers’ Track at the RSA Conference
on Topics in Cryptology (CT-RSA), 2006.

[9] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space aslr,” in IEEE Symposium on Security and Privacy
(S&P), 2013.

[10] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: Cross-cores
cache covert channel,” in Detection of Intrusions and Malware, and Vul-
nerability Assessment (DIMVA), 2015.

[11] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer, “Hello from the other side: SSH over robust
cache covert channels in the cloud,” in Network and Distributed System
Security Symposium (NDSS), 2017.

[12] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida, “Spec-
ulative probing: Hacking blind in the spectre era,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2020.

[13] S. Röttger and A. Janc, “A Spectre proof-of-concept for a Spectre-
proof web.” https://github.com/google/security-research-pocs/
tree/master/spectre.js, 2021.

[14] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol, and Y. Yarom,
“Amplifying side channels through performance degradation,” in Annual
Conference on Computer Security Applications (ACSAC), 2016.

[15] D. J. Bernstein, J. Breitner, D. Genkin, L. G. Bruinderink, N. Heninger,
T. Lange, C. van Vredendaal, and Y. Yarom, “Sliding right into disas-
ter: Left-to-right sliding windows leak,” in Cryptographic Hardware and
Embedded Systems (CHES), 2017.

[16] D. Genkin, L. Valenta, and Y. Yarom, “May the fourth be with you: A
microarchitectural side channel attack on several real-world applications of
curve25519,” in ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2017.

[17] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom,
“Ladderleak: Breaking ECDSA with less than one bit of nonce leakage,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2020.

[18] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on aes to practice,” in IEEE Symposium on Security
and Privacy (S&P), 2011.

113



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

[19] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How SGX
amplifies the power of cache attacks,” in Cryptographic Hardware and
Embedded Systems (CHES), 2017.

[20] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, l3
cache side-channel attack,” in USENIX Security Symposium, 2014.

[21] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-
channel attacks in paas clouds,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2014.

[22] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Automat-
ing attacks on inclusive last-level caches,” in USENIX Security Symposium,
2015.

[23] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A Fast
and Stealthy Cache Attack,” in Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2016.

[24] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ASPLOS, 2016.

[25] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armaged-
don: Cache attacks on mobile devices,” in USENIX Security Symposium,
2016.

[26] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding eviction
sets,” in IEEE Symposium on Security and Privacy (S&P), 2019.

[27] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. M. Tullsen, “Prime+abort:
A timer-free high-precision L3 cache attack using intel TSX,” in USENIX
Security Symposium, 2017.

[28] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware transac-
tional memory,” in USENIX Security Symposium, 2017.

[29] Intel, “Intel Transactional Synchronization Extensions
(Intel TSX) Asynchronous Abort.” https://software.
intel.com/security-software-guidance/deep-dives/
deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort,
2019.

[30] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, cross-vm attack on aes,” in Research in Attacks, Intrusions, and
Defenses (RAID), 2014.

114



Prime+Scope: High-Precision Cache Contention Attacks

[31] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom, “Flush, gauss,
and reload–a cache attack on the BLISS lattice-based signature scheme,”
in Cryptographic Hardware and Embedded Systems (CHES), 2016.

[32] D. Wang, Z. Qian, N. Abu-Ghazaleh, and S. V. Krishnamurthy, “Papp:
Prefetcher-aware prime and probe side-channel attack,” in Design Automa-
tion Conference (DAC), 2019.

[33] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2012.

[34] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth, and B. Sunar,
“A faster and more realistic flush+reload attack on AES,” in Constructive
Side-Channel Analysis and Secure Design (COSADE), 2015.

[35] N. Benger, J. Van de Pol, N. P. Smart, and Y. Yarom, ““ooh aah... just
a little bit”: A small amount of side channel can go a long way,” in
Cryptographic Hardware and Embedded Systems (CHES), 2014.

[36] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based attacks
on enclaved execution,” in USENIX Security Symposium, 2017.

[37] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware
guard extension: Using SGX to conceal cache attacks,” in Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2017.

[38] A. Abel and J. Reineke, “Measurement-based modeling of the cache re-
placement policy,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013.

[39] A. Abel and J. Reineke, “nanobench: a low-overhead tool for running
microbenchmarks on x86 systems,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2020.

[40] S. Briongos, P. Malagon, J. M. Moya, and T. Eisenbarth,
“RELOAD+REFRESH: Abusing cache replacement policies to perform
stealthy cache attacks,” in USENIX Security Symposium, 2020.

[41] P. Vila, P. Ganty, M. Guarnieri, and B. Köpf, “Cachequery: Learning
replacement policies from hardware caches,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2020.

[42] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote software-
induced fault attack in javascript,” in Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA), 2016.

115



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

[43] W. Xiong and J. Szefer, “Leaking information through cache lru states,” in
IEEE Symposium on High Performance Computer Architecture (HPCA),
2020.

[44] S. Briongos, I. Bruhns, P. Malagón, T. Eisenbarth, and J. M. Moya,
“Aim, wait, shoot: How the cachesniper technique improves unprivileged
cache attacks,” in IEEE European Symposium on Security and Privacy
(EuroS&P), 2021.

[45] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes,
and countermeasures,” Journal of Cryptology, 2010.

[46] L. De Feo, B. Poettering, and A. Sorniotti, “On the (in) security of
elgamal in openpgp,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2021.

[47] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. Zhao, X. Zou, T. Unterlug-
gauer, J. Torrellas, C. Rozas, A. Morrison, F. Mckeen, F. Liu, R. Gabor,
C. W. Fletcher, A. Basak, and A. Alameldeen, “Speculative interference
attacks: Breaking invisible speculation schemes,” ASPLOS, 2021.

[48] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu,
“Are we susceptible to rowhammer? an end-to-end methodology for cloud
providers,” in IEEE Symposium on Security and Privacy (S&P), 2020.

[49] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama:
Exploiting dram addressing for cross-cpu attacks,” in USENIX Security
Symposium, 2016.

[50] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the cpu on-chip ring interconnect are practical,” in
USENIX Security Symposium, 2021.

[51] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi,
“Smash: Synchronized many-sided rowhammer attacks from javascript,” in
USENIX Security Symposium, 2021.

[52] S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi, “Malicious management
unit: Why stopping cache attacks in software is harder than you think,” in
USENIX Security Symposium, 2018.

[53] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in Applied Cryptography and
Network Security, 2018.

116



Prime+Scope: High-Precision Cache Contention Attacks

[54] M. Schwarz, M. Lipp, D. Moghimi, J. V. Bulck, J. Stecklina, T. Prescher,
and D. Gruss, “Zombieload: Cross-privilege-boundary data sampling,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[55] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi,
H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,” in IEEE
Symposium on Security and Privacy (S&P), 2019.

[56] Y. Yarom and N. Benger, “Recovering openssl ecdsa nonces using the flush+
reload cache side-channel attack.,” IACR Cryptol. ePrint Arch. 2014/140,
2014.

[57] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom, “Prime+probe 1, javascript 0: Overcoming browser-based side-
channel defenses,” in USENIX Security Symposium, 2021.

[58] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side chan-
nel attacks,” ACM Transactions on Architecture and Code Optimization
(TACO), 2012.

[59] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee,
“Catalyst: Defeating last-level cache side channel attacks in cloud comput-
ing,” in IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2016.

[60] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in USENIX Security Symposium,
2016.

[61] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “Hybcache: Hybrid side-
channel-resilient caches for trusted execution environments,” in USENIX
Security Symposium, 2020.

[62] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “{CURE}: A security architecture with customizable
and resilient enclaves,” in USENIX Security Symposium, 2021.

[63] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-
based side channel attacks,” in International Symposium on Computer
Architecture (ISCA), 2007.

[64] F. Liu and R. B. Lee, “Random fill cache architecture,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2014.

117



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

[65] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2018.

[66] M. K. Qureshi, “New attacks and defense for encrypted-address cache,” in
International Symposium on Computer Architecture (ISCA), 2019.

[67] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Man-
gard, “Scattercache: Thwarting cache attacks via cache set randomization,”
in USENIX Security Symposium, 2019.

[68] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “Phantomcache: Obfuscating cache
conflicts with localized randomization,” in Network and Distributed System
Security Symposium (NDSS), 2020.

[69] G. Saileshwar and M. Qureshi, “Mirage: Mitigating conflict-based cache
attacks with a practical fully-associative design,” in USENIX Security
Symposium, 2021.

118



Chapter 7

Double Trouble: Combined
Heterogeneous Attacks on
Non-Inclusive Cache
Hierarchies

Publication data

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede, “Double
Trouble: Combined Heterogeneous Attacks on Non-Inclusive Cache Hierarchies”.
USENIX Security Symposium, 2022, pp. 3647–3664

For compactness, the appendices are not included. Please refer to [155].

Contributions

Main author together with Furkan Turan, who developed the hardware
implementation.

119



Double Trouble: Combined Heterogeneous
Attacks on Non-Inclusive Cache Hierarchies

Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

imec-COSIC, KU Leuven

Abstract. As the performance of general-purpose processors faces dimin-
ishing improvements, computing systems are increasingly equipped with
domain-specific accelerators. Today’s high-end servers tightly integrate
such accelerators with the CPU, e.g., giving them direct access to the
CPU’s last-level cache (LLC).
Caches are an important source of information leakage across security
domains. This work explores combined cache attacks, complementing
traditional co-tenancy with control over one or more accelerators. The
constraints imposed on these accelerators, originally perceived as lim-
itations, turn out to be advantageous to an attacker. We develop a
novel approach for accelerators to find eviction sets, and leverage precise
double-sided control over cache lines to expose undocumented behavior
in non-inclusive Intel cache hierarchies.
We develop a compact and extensible FPGA hardware accelerator to
demonstrate our findings. It constructs eviction sets at unprecedented
speeds (< 200 µs), outperforming existing techniques with one to three
orders of magnitude. It maintains excellent performance, even under high
noise pressure. We also use the accelerator to set up a covert channel
with fine spatial granularity, encoding more than 3 bits per cache set.
Furthermore, it can efficiently evict shared targets with tiny eviction sets,
refuting the common assumption that eviction sets must be as large as
the cache associativity.

1 Introduction
Heterogeneous computing yields great increases in performance and energy
efficiency with specific processing capabilities for certain tasks. Recently, FPGAs
have emerged in datacenters for providing such capabilities. They can be
used to accelerate wide-scale data center services, such as machine learning
applications. More interestingly, cloud service providers give control of FPGAs
to customers, who can implement custom accelerators and integrate them into

120



Double Trouble: Combined Heterogeneous Cache Attacks

Table 1: Positioning of threat models considered in this work

Attacker
Victim CPU Secondary

CPU
Last-Level Cache [70, 33, 21]

Packet Chasing [55]Coherence Directory [66]
This work

Secondary Grand Pwning Unit [11] NetCAT [27]JackHammer [62]

Combined This work

their applications. After initial steps by Amazon’s AWS, which already allows
users to rent FPGA-supported instances, AMD and Intel acquired the two main
FPGA manufacturers (resp. Xilinx and Altera). The aim is to aid customers
in their transition through easy and low-overhead integration of software and
hardware. As of yet, their security is not fully mature [57]. At the same
time, economic incentives attract infrastructure providers to multi-tenancy,
i.e., hosting multiple (distrusting) entities on the same physical machine. This
work evaluates the impact of heterogeneous multi-tenancy on the quintessential
shared hardware component: the cache hierarchy.

Caches play a fundamental role in high-performance computing. By serving
the majority of memory requests from fast levels of storage close to the processor
(CPU), they overcome the bottleneck caused by comparatively slow memory.
Equally fundamental, however, is the timing side channel they introduce, as
access latencies depend on access patterns of co-located processes. While some
attack techniques rely on cache flushes and shared memory [14, 70], others
work with contention [33, 21]. To determine the access patterns of the victim,
contention-based attacks employ so-called eviction sets, i.e., sets of addresses
that contend for cache resources.

Over time, the cache side channel was proven effective to extract keys from
cryptographic implementations [41, 3, 17, 70], retrieve user input [50, 40, 13],
or infer kernel secrets [16, 23, 12]. Caches have also been used to establish
covert channels [33, 37] and are a key enabler of recent transient execution
attacks [31, 25]. The ongoing switch to non-inclusive cache hierarchies for
high-end CPUs was believed to thwart several attack classes, but this belief
has been disproven [66]. However, non-inclusive hierarchies remain relatively
unexplored compared to their inclusive counterparts.

The lion’s share of the cache attack literature considers CPU processes tar-
geting other processes. Recent studies introduced some heterogeneity, whether
it be peripheral devices attacking CPU processes [11, 27, 62], or CPU processes
attacking peripherals [55]. This work identifies combined microarchitectural
attacks as a threat deserving further examination (cf. Table 1). It is becoming

121



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

increasingly common to control multiple entities (i.e., devices), which differ in
computational capabilities and access to the memory subsystem.
Intel’s Data-Direct IO (DDIO) [18] is a prominent technology that gives PCIe
devices direct access to the CPU’s last-level cache (LLC). For instance, existing
FPGA-accelerated cloud platforms make use of PCIe-based FPGA accelerator
cards. DDIO provokes an interesting dynamic in the cache hierarchy, which
CPU processes observe through the lens of their private caches, whereas PCIe
(DDIO) devices, from now on referred to as secondary devices, observe it directly
through the LLC. This double view is especially interesting in non-inclusive
cache hierarchies, where the LLC is less amenable to direct interaction [66]. This
work investigates the collusion of microarchitectural attackers in heterogeneous
systems, applied to the widely-used DDIO technology, which already has been
shown to bear security implications [27, 62, 55].

In light of the growing interest in heterogeneous computing, this paper seeks
to answer the following questions:
How precisely can combined attackers control shared cache state? Can the
constraints imposed on DDIO devices turn out to be advantageous? Do common
assumptions remain valid in the face of combined attackers?

In this paper, we study combined heterogeneous attacks on emerging non-
inclusive Intel cache hierarchies. We identify a set of properties governing the
interaction between the CPU and DDIO devices. Attacks originating from sec-
ondary devices, e.g., network cards [27] or FPGAs [62], perceive these properties
as limitations. For combined attackers, who can dispatch between CPU and
secondary device, they enable otherwise infeasible techniques. Ultimately, this
leads us to challenge common assumptions, as summarized in Table 2. When
relevant, we instantiate secondary devices with FPGAs.
Contributions. Summarized, our main contributions are:

- We explore key primitives for combined cache attacks and discover a new
DDIO-related structure in the LLC.

- We develop a fast and reliable procedure for secondary devices to find
eviction sets in non-inclusive Intel caches.

- We leverage precise LLC manipulation for reliable eviction with fewer
congruent addresses than there are ways.

- We design an FPGA accelerator that implements the aforementioned
techniques and make it openly available:

https://github.com/KULeuven-COSIC/Double-Trouble

122



Double Trouble: Combined Heterogeneous Cache Attacks

Table 2: Challenging common understanding

Common Understanding Our Finding

Eviction set construction
reached speed limits [60]

Accelerating Eviction Set
Construction (Section 4)

Secondary devices only allocate
to DDIO region in LLC [18, 27, 62]

Discover undocumented DDIO+

region (Section 5)
Non-inclusive LLC:

needs directory conflicts [66]
Eviction from private cache
through LLC (Section 6.1)

Cannot evict from remote socket without
flush [22, 68]

Flushless cache attacks across
sockets (Section 6.1)

Minimal eviction set is as
large as associativity [33, 60]

Reliable Eviction with Tiny
Eviction Sets (Section 6.2)

Amplitude-based encoding
precluded by self-eviction [37]

Modulation and Multi-bit
Symbols (Section 8.2)

2 Background

2.1 Heterogeneous Computing

As the limits of general-purpose computers are pushed, domain-specific compu-
tation gains importance. Companies have started playing games with custom
chips, combining CPUs with accelerators, e.g., for machine learning or network-
ing. Instead of inefficiently increasing CPU core counts, these architectures
complement CPUs with custom accelerators, offering high-performance compu-
tation, often at low power. Popular examples are Google’s TPU and Apple’s
M1.

On the server side, FPGA-attached CPUs serve the grounds to play this
game. With their hardware programmability, FPGAs allow users to implement
custom accelerators for their specific needs. Some cloud providers (e.g., AWS)
already provide homemade accelerators to customers, or a marketplace where
accelerators can be sold or rented. CPU giants have acquired FPGA manu-
facturers (Intel-Altera, AMD-Xilinx), and are working on tight integration of
CPUs and FPGAs.

Today, these platforms attach FPGAs to CPUs as PCIe accelerator cards.
On the CPU side, kernel drivers and APIs enable applications to communicate
with their hardware accelerators. On the FPGA side, Control and Status
Registers (CSRs) offer basic data transfers, and Direct Memory Access (DMA)
allows the FPGA to access system memory. In this paper, we focus on the latter,
as it interacts with the CPU memory subsystem. Although we focus on FPGA-
specific terminology, many conclusions carry over to other PCIe-connected
devices, e.g., Network Interface Cards (NICs) or Thunderbolt.

123



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

2.2 Cache Organization

Modern cache hierarchies comprise multiple levels. Lower cache levels are closer
to the CPU, and are usually smaller and faster than higher levels. Typical Intel
processors have three cache levels, with L1 and L2 caches private to each core,
and the last-level cache (L3, or LLC) shared between cores.

Caches are organized as arrays of cache lines of, typically, 64 bytes. Most
caches are set-associative, meaning that they are partitioned in sets. Each
cache line maps to exactly one set, based on an indexing function applied to
their address. The associativity refers to the number of lines that can reside
simultaneously in the same set, i.e., the number of ways, W.

When a requested line is not present in a cache (i.e., a cache miss), it is
usually installed after propagating the request to the next level. In the absence
of empty ways, the cache replacement policy determines the line to evict in favor
of the incoming one. Lines mapped to the same set are congruent. Contending
for the same resource, they can evict each other.

The inclusion invariants of the cache hierarchy determine whether cache
lines can reside simultaneously in multiple levels. A cache is inclusive w.r.t.
another (lower-level) cache if every line in the latter must also be present in
the former. Exclusive caches cannot have lines in common. Caches that do not
satisfy either invariant are non-inclusive. Historically, Intel LLCs are inclusive,
but to keep up with increasing core counts, non-inclusive LLCs are becoming
commonplace [38].

Contemporary LLCs are partitioned in slices, with an undocumented and
architecture-dependent mapping [36]. For large core counts, the slices are
interconnected with a mesh architecture [38]. High-end systems can have
multiple CPU sockets, connected with a coherent memory hierarchy.

2.3 Data-Direct IO (DDIO)

Direct Cache Access (DCA) [15] is a mechanism developed for the fast exchange
of Ethernet frames between CPUs and Network Interface Cards (NICs). Instead
of accessing main memory, NICs interact directly with the CPU’s LLC to alleviate
memory bottlenecks and cache thrashing, improving I/O performance [19, 29,
34, 9, 10]. DDIO [18] is Intel’s implementation of DCA, available on server-grade
CPUs. It is enabled on such CPUs by default, and PCIe devices (NICs, FPGAs,
etc.) transparently interact with the LLC instead of memory.

Unfortunately, specific DDIO behavior is largely undocumented, especially
for non-inclusive cache hierarchies. Some works partially reverse-engineer it
[62, 27]. Section 3.2 covers known and yet unknown DDIO behavior in detail.

124



Double Trouble: Combined Heterogeneous Cache Attacks

2.4 Cache Attacks

The observation that the execution time of a program depends on its control
flow and interaction with the cache hierarchy characterized the first generation
of cache attacks [26, 43, 3]. Later, the case was made for co-located attackers,
i.e., those running code on the same physical platform as potential victims. By
manipulating and observing the cache state, they observe much more fine-grained
access patterns [44, 41].

Arguably the strongest technique is Flush+Reload, where the attacker
flushes a target line from the cache (e.g., using clflush on x86), and later
reads it to determine whether the victim accessed it in the meantime. In the
absence of clflush [30], an attacker can evict the shared line instead, which is
referred to as Evict+Reload [13]. Both techniques require shared memory
with the victim (e.g., KSM [2]). In contrast, Prime+Probe only relies on
cache contention. In particular, the attacker occupies an entire cache set with
her own lines, waits, and afterwards loads these lines again. If another process
has accessed lines congruent to those of the attacker, this will be reflected in
the attacker’s access latency. Due to its low requirements, Prime+Probe has
been mounted from restricted environments [40, 27].

The target cache needs to be shared between attacker and victim. Initial
attacks considered same-core attackers and targeted the L1 cache [44, 41]. Later
attacks managed to target the LLC [70, 33, 21], enlarging the threat to cross-core
attacks.

Until recently, cross-core Evict+Reload and Prime+Probe relied explic-
itly on the inclusive nature of the LLC. In this case, eviction from the LLC implies
invalidation in all lower-level caches to preserve the inclusion invariant [33, 21].
This allows to evict lines from other cores’ private caches.

Non-inclusive Caches. In non-inclusive caches, lines in L2 are not necessarily
present in the LLC. In fact, they rarely are, since loads from memory are
installed in L1/L2, skipping the LLC. Conversely, contention on the LLC alone
does not invalidate lines in the lower-level caches of other cores. To overcome
this problem for non-inclusive Intel CPUs, Yan et al. [66] propose contention
on the coherence directory (CD), also referred to as the snoop filter. The CD
tracks lines present in lower-level caches, and is inclusive to accelerate coherence
transactions with other cores [72]. On Intel CPUs, the LLC and CD share the
same slice and set mapping.

This paper considers cross-core attacks in non-inclusive Intel caches. The
targets are the LLC and CD, and lines are congruent when they share the same
LLC/CD set and slice.

125



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

2.5 Eviction Set Construction
Prior to a Prime+Probe or Evict+Reload attack, the attacker constructs
eviction sets, i.e., sets of congruent addresses. If physical addresses and their
mapping to LLC/CD sets and slices are known, finding congruent addresses is
trivial.

In practice, however, the attacker is limited on both fronts. First, unprivi-
leged processes observe virtual addresses, organized in 4 KiB or 2 MiB pages,
and do not know the virtual-to-physical address translation. Therefore, physi-
cal address control is limited to the page frame bits, which are unaffected by
translation (cf. Figure 1). Second, the slicing function is undocumented and
architecture-dependent [36, 66].

Liu et al. [33] construct eviction sets for inclusive LLCs. Vila et al. [60]
accelerate it by improving the time complexity from quadratic to linear. Yan
et al. [66] find LLC/CD eviction sets in non-inclusive Intel caches. To that end,
they introduce helper sets that are congruent in L2 but not the LLC. Techniques
for non-inclusive caches are currently underdeveloped w.r.t. inclusive caches.
Moreover, because of the indirect interaction with the LLC, their noise-resilience
is unclear.

2.6 Experimental Setup
We work remotely on Intel Labs (IL) Academic Compute Environment (ACE),
with dual-socket Xeon Platinum CPUs (28 cores/slices per socket). We also
use a local lab setup, with dual-socket Xeon Silver CPUs (8 cores/slices per
socket). All platforms have non-inclusive LLCs. The platforms utilize Intel’s
PCIe-based FPGA accelerator cards called Programmable Acceleration Cards
(PACs), either with Arria 10 (A10) or Stratix 10 (S10) family FPGAs. Table 3
summarizes the platforms and their cache hierarchy.

A basic FPGA design can transparently interact with the memory subsystem
over DDIO. At a high level, it can read and write to memory, and distinguish
between access latencies (L2/LLC/RAM) based on immutable timing sources. A
detailed description of our implementation is deferred to Section 7.

06121721

Set index bits for a 2048-set LLC:

Small page (4 KiB):

Huge page (2 MiB):

Figure 1: Control over cache set index depends on page sizes

126



Double Trouble: Combined Heterogeneous Cache Attacks

Table 3: Platforms Used for Experimentation

Platform CPU Arch. Core FPGA
Intel Xeon Count Intel PAC

ACE 1 Plat. 8180 SKL-SP 28 A10
ACE 2 Plat. 8280 CLX-SP 28 S10 (x2)
Local Silver 4208 CLX-SP 8 A10 (x2)

SKL: Skylake, CLX: Cascade Lake

Cache Info Ways Size per Core
L1 Core-Private 8 32 KB
L2 Core-Private 16 1 MB
LLC Shared, Non-Inclusive 11 1.375 MB

3 Double Trouble: Combined Cache Attacks
3.1 Threat Model
The main threat model in this work is the combined attacker (ACMB). As
indicated in Figure 2, she controls at least one CPU core and a secondary
device connected over DDIO. In our case, an FPGA is used as the secondary
device. The attacker can dispatch operations to software and hardware, and
share memory between them. For completeness, we also consider traditional
attackers (ASTD) without a secondary device.

The attacker has no privileges and does not know the slice mapping. We
do not assume the availability of a clflush instruction (in accordance to, e.g.,
[66]). Although our findings do not strictly require huge memory pages, we

Core Core

L1 L1

L2 L2

LLC

Core Core

L1 L1

L2 L2

LLC

RAM

FPGA FPGA

PCIe Bus

VCC VCS V2DASTD
ACMB

Figure 2: Combined attackers control a CPU process and secondary device. We
consider three victim types (VCC,VCS,V2D).

127



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

assume them to be available, as they are enabled by default on server-grade
platforms with FPGA acceleration (e.g., OPAE [20]).

To navigate the heterogeneity in attacker and victim properties, Table 4
summarizes our main results and indicates the configurations to which they
apply. We distinguish between the degree of co-location: attacker and victim
running on different cores (VCC), on different sockets (VCS), or a victim secondary
device attached to the attacker socket (V2D).

Section 4 introduces a new algorithm for swift and reliable eviction set
construction, overturning the limitations of secondary devices. Section 5 exposes
undocumented behavior in the LLC, which we use to obtain an intra-cache-
set granularity. Section 6 shows how standard attackers can evict shared lines
without CD contention, and how combined attackers can do so with tiny eviction
sets. These results require shared memory between the attacker and victim.
Section 7 describes our implementation of an FPGA hardware accelerator, which
is evaluated in Section 8.

3.2 Key Properties
3.2.1 Spatially Limited Interaction With LLC

To prevent thrashing, DDIO devices only interact with a fraction of the last-level
cache (LLC) [18]. Lines read by the secondary device are not allocated in the
LLC [27, 62], but they are served from the LLC if already present. Lines written
by the secondary device are allocated, but only to a limited number of ways
(two by default) in every set [10, 27].

In contrast to previous suggestions [18, 27], we find that the replacement
policy is not LRU (cf. rationale in Appendix C).
Non-Default DDIO Configurations. The number of LLC ways to which
DDIO can write-allocate is, by default, two [10, 27]. However, this can be
configured in the IIO_LLC_WAYS Model Specific Register (MSR) [32, 10], with a
bitmask that represents the cache ways used by DDIO. The minimal and default
setting is 0x600. More ways can be activated by setting more bits, provided
that the selected ways are consecutive. In this paper, we denote the number of
DDIO ways as D.

Table 4: Applicability of the main results of this work

Capabilities Attacker Victim Shared
MemoryASTD ACMB VCC VCS V2D

Eviction Set Finding ✓ ✓ ✓ ✓
Intra-set Granularity ✓ ✓ ✓
Eviction without CD ✓ ✓ ✓ ✓ ✓
Reduced Eviction ✓ ✓ ✓ ✓

128



Double Trouble: Combined Heterogeneous Cache Attacks

Figure 3: Secondary reads do not change eviction candidates.

The default configuration (D =2) is, arguably, the most important to study
from a security point of view. In accordance with prior studies [27, 62], we focus
our attention on this configuration, and assume it unless otherwise indicated.
However, when relevant, we generalize our findings to 2 ≤ D ≤W .

Property #1: Spatially limited LLC interaction.
Secondary devices interact directly with the LLC. Only writes trigger cache
line placement, which is statically constrained to a limited number of ways
(two by default).

3.2.2 Reading Without Consequences

The property that secondary devices do not read-allocate in the cache has an
underappreciated corollary: it allows attackers to query the cache state without
disturbing it. We illustrate the implications of this power with two relevant
examples.
Example: Counting LLC Entries. Consider how to infer how many (out
of N) lines are cached in the LLC. This can be done by measuring the access
latency of all N lines, counting those within the predetermined LLC timing
range.

CPU-only attackers are limited in their accuracy. Consider the case where at
least one line is not cached. Measuring the access latency of this line allocates
it in the cache. In this process, it may evict the other lines, perturbing the
measurement.

The combined attacker, in contrast, can measure the cache state reliably, i.e.,
a partial measurement does not endanger the validity of the full measurement,
and repetitively, i.e., several measurements of the same state can be combined.
Example: Eviction Candidate. For lines already in the LLC, do secondary
reads influence the eviction candidate, i.e., the line to be evicted upon installation
of a new congruent line?

Consider Figure 3, where X0, X1 and X2 are congruent lines. X0 and X1
are placed in the DDIO region with secondary writes. X1 is written repeatedly
to ensure that X0 is the eviction candidate. Indeed, we observe that writing
X2 evicts X0.

129



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

(a) L2 Contention:
L2 → LLC

(b) CD Contention:
L2 → LLC

(c) CPU Write:
LLC → L2

(d) Shared Access:
L2 → LLC

(e) Secondary Write:
L2 → LLC

(f) CPU Read: LLC→L2
(or→L2&LLC)

Figure 4: Techniques for combined attackers to manipulate the cache hierarchy.

In a first experiment, the secondary device writes a few times to X0. We
observe that placement of X2 now evicts X1, so the earlier write to X0 changed
the eviction candidate to X1. The second experiment performs several reads of
X0. If the replacement policy records these reads, the eviction candidate should
change to X1. Still, we find that placing X2 always evicts X0. We conclude that
secondary reads, in contrast to writes, do not influence the LLC replacement
policy state.

Finding #2: Non-destructive secondary reads.
Secondary reads are non-destructive. Reading uncached lines does not trigger
cache allocation, and reading LLC lines does not influence their replacement
policy state.

3.2.3 Two-sided Cache Hierarchy Manipulation

Combined attackers can approach non-inclusive cache hierarchies from two sides.
We now cover known and novel primitives to trigger movement between L21

and the LLC. Moving or copying lines to the LLC is useful, as lines evicted from
the LLC are invalidated in all cache levels [66]. Moving lines from the LLC to L2
is useful to invalidate specific LLC ways. Our repository supports these findings
with experiments.
L2 to LLC. The most straightforward way to move an L2 line to the LLC is
to access sufficient addresses mapped to the same L2 set (cf. Figure 4a). This

1Since L2 is inclusive w.r.t. L1, for our purposes they can be consolidated.

130



Double Trouble: Combined Heterogeneous Cache Attacks

technique can only be used by processes running on the core tied to the specific
L2 cache.

Yan et al. [66] demonstrate the eviction of lines from remote private caches,
i.e., L2 caches associated with other cores. They do this by generating contention
on the coherence directory CD (cf. Figure 4b), the inclusive structure co-located
with the LLC that keeps track of lines in L2 caches.

On our test platforms, we observe that when a line is accessed by two
processes on different cores, it is copied to the LLC. The line then co-exists in
the LLC and both private L2 caches (cf. Figure 4d). We find this novel technique
to be accurate and simple to move a target line to the LLC. However, note that
this primitive is limited to attacker-readable lines.

Specifically for the combined attacker, there is yet another primitive available
(cf. Figure 4e). The secondary device writes the line, which moves it to the LLC.
Now dirty, the line is invalidated from all other caches to maintain coherence.
Note that this primitive is limited to attacker-writable lines.
LLC to L2. A line can be moved from the LLC to L2 by read or write requests
from CPU cores. Lines that are written (Figure 4c) move from the LLC to
L2, invalidating the LLC line for coherence purposes [67]. If the line is read
(Figure 4f), we find that lines that only exist in the LLC (e.g., in modified or
exclusive state) move back to L2 and are invalidated in the LLC. In contrast,
lines present in multiple caches (e.g., in shared or forward state) are copied to
L2, i.e., they remain allocated in the LLC. As these observations are partially
inconsistent with prior work [66, 67], we share our rationale in Appendix B.

Replacement policies prefer to install incoming lines in empty ways (if
present) to avoid unnecessary eviction of useful lines. Some primitives are able
to produce empty ways by invalidation. We refer to these ways as magnet ways.

Finding #3: Precise manipulation of cache hierarchy.
Combined attackers can accurately migrate lines between cache levels, and
invalidate them from selected caches.

4 Fast Eviction Set Finding using DDIO

The eviction set construction problem is the following: given a target cache
line, find EV congruent lines in the designated cache (of associativity W ). We
review existing algorithms for the LLC, and expose a new method for combined
attackers, enabled by limitations of secondary devices (#1, #2).

131



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Figure 5: Traditional reduction-based algorithms

4.1 Reduction Algorithms
Figure 5 depicts the structure of traditional eviction set construction algorithms.
First, an initial set of candidate addresses is constructed [33], for which the size
depends on attacker control over physical address bits [60]. Then, it is reduced
to a minimal eviction set, i.e., a set, typically of size EV ≥W , that no longer
contains any non-congruent addresses.

The reduction is an iterative procedure based on a congruence test that
removes a portion of the current set and tests whether the remainder still evicts
the target. If so, the portion is not necessary for eviction and can be discarded.
Initial algorithms for inclusive caches [33, 21, 40] remove one element at a time,
leading to quadratic complexity in the initial set size. Vila et al. [60] propose
to perform the congruence test on groups of addresses instead, achieving linear
complexity.

Yan et al. [66] develop a reduction algorithm for non-inclusive Intel LLCs
with a custom congruence test (cf. Section 2.4). Their algorithm has quadratic
complexity, but may be amenable to similar improvements [60]. However, it
appears to need several eviction and measurement iterations to cope with the
complications of non-inclusive caches.

4.2 Acceleration with Discover-Expand
Secondary devices generally perceive a smaller LLC associativity (#1), with
D =2 by default. As a result, D+1 congruent addresses are sufficient to manifest
contention. In addition, the non-destructive reads (#2) enable a congruence test
that determines whether a single address is congruent with a target, instead of
whether a pool of addresses contains some that are congruent. These properties
lead to an effective search algorithm, based on expansion rather than reduction
(cf. Figure 6).
The algorithm takes as input a target address (TARGET), desired eviction set
size (EV), and stride representing attacker-controllable address bits (STRIDE).
The output is an eviction set, i.e., EV addresses that are mapped to the same
LLC set and slice as TARGET. The algorithm does not build an initial set, and
comprises two phases: Discover obtains the first D−1 congruent addresses,

132



Double Trouble: Combined Heterogeneous Cache Attacks

Figure 6: Expanding eviction set construction. For D =2, Discover only needs
to find a single congruent address.

and Expand completes the eviction set.

Algorithm 1 Eviction Set Construction: Discover finds the first D−1 congruent
addresses, Expand finds the others

Di
sc

ov
er

Ex
pa

nd

a new address
from search space
with STRIDE

DISCOVER_FOUND:
addresses found
in Discover,
es[0,1,.,D-2]

Input: TARGET: an address for the eviction set, EV: desired eviction set size, STRIDE:
indicates attacker-controlled bits
Output: es eviction set

1: es[] ← empty list
2: do
3: secondary_write(TARGET)
4: secondary_write(es[0,1,.,len(es)-1])
5: do
6: TEST_ADDRESS ← new candidate
7: secondary_write(TEST_ADDRESS)
8: while secondary_read(TARGET) is fast
9: append TEST_ADDRESS to es

10: while len(es) < D-1
11: do
12: secondary_write(TARGET)
13: secondary_write(es[0,1,.,D-2])
14: do
15: TEST_ADDRESS ← new candidate
16: secondary_write(TEST_ADDRESS)
17: while secondary_read(TARGET) is fast
18: append TEST_ADDRESS to es
19: while len(es) < EV

4.2.1 Discover: Finding the First D−1 Addresses

First, the Discover phase writes TARGET, installing it in the LLC’s DDIO ways.
Then, it iteratively writes a new candidate address and afterwards measures the
access latency of TARGET. If the latter has been evicted (from LLC to RAM),
the candidate is determined to be congruent with it.

As the DDIO associativity is D, it is expected that D−1 congruent test

133



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

addresses are overlooked for every congruent candidate that is actually added
to the eviction set. However, as soon as D−1 elements have been found (a set
denoted as DISCOVER_FOUND), the Discover phase can terminate in favor of
the more efficient Expand phase.

4.2.2 Expand: Finding More Addresses

The Expand phase writes TARGET and DISCOVER_FOUND to occupy all D
DDIO ways. Then, similar to Discover, new candidates are written, each time
measuring the access latency of TARGET to determine whether the candidate is
congruent. This step is repeated to obtain the full eviction set.

4.2.3 Algorithmic Complexity

The stride of the search depends on control over physical address bits (cf.
Section 2.5) and the number of LLC/CD slices (cf. Section 2.2). As the slice
mapping is unknown, candidates can, at best, be selected based on their LLC
set index bits.

Our test LLCs have 2048 sets with 8 or 28 slices (SLICES). Huge pages allow
to configure all set index bits, so the congruence probability for candidate
addresses is SLICES−1, assuming lines are distributed among slices uniformly at
random.

The congruence probability directly relates to the expected number of
candidates to test in the Expand phase. In the Discover phase, however, the
first D−1 congruent candidates may be missed. In first order, the expected
number of candidates to test is (D − 1) · [D · SLICES] + (W −D + 1) · [SLICES].
Section 8.1 evaluates accuracy and speed in practice.

Algorithm 2 Verification algorithm to check congruence

TARGET and
CANDIDATE are in-
terchanged in
consecutive runs

Input: TARGET, DISCOVER_FOUND, CANDIDATE
Output: boolean: are the inputs congruent?
1: secondary_write(TARGET);
2: secondary_write(DISCOVER_FOUND);
3: secondary_write(CANDIDATE);
4: return true if secondary_read(TARGET) is fast

4.2.4 Low-level Aspects

Replacement Policy. The simplified algorithm assumes LRU replacement.
However, we find that repeated writes influence the eviction candidate (cf.
Appendix C). To ensure that TARGET is the eviction candidate, the accelerator
performs the secondary_write on lines 4/13 of Algorithm 1 twice.

134



Double Trouble: Combined Heterogeneous Cache Attacks

Table 5: Access sequences to cache line L to prepare its state, with the resulting
cache level for L, whether L is modified, and whether a secondary write allocates
L to the DDIO region

Access Sequence Level Modified DDIO

1 sw_flush(L) RAM ✓
2 sw_write(L) L2 ✓
3 sw_flush(L); sw_read(L) L2 ✓
4 hw_write(L); sw_read(L) L2 ✓

(sw_* and hw_* denote actions by CPU and secondary device, resp.)

Verification. To increase robustness against false positive errors (e.g., due
to noise), Algorithm 2 optionally performs additional checks. It is called with
TARGET, DISCOVER_FOUND and the address to be tested, and performs two
permuted verification tests. This way, a false positive candidate will only pass
if there is noise in two different cache sets.

As the verification needs D+1 addresses (including TARGET), the accuracy
of the DISCOVER_FOUND set itself is confirmed together with the first address
of the Expand phase. If it fails, both addresses are discarded and Discover is
restarted. As soon as DISCOVER_FOUND is verified, all subsequent addresses can
be verified in isolation. To increase confidence, multiple verification repetitions
can be performed.
Write Limitation. The routine requires write access to TARGET. However,
an LLC-congruent address to the intended target can be used as input to the
algorithm (cf. Section 8.3).

5 Structure of the LLC Set
This section revisits the interaction between DDIO devices and the LLC (#1).
Secondary writes to uncached lines are known to allocate in the LLC, specifically
to one of the DDIO ways [27, 62, 10]. It is worth investigating whether this
behavior holds for lines that are already cached, e.g., in L2. Contrary to
expectation, it appears to depend on the state of the line.
Another Region in the LLC Set. Consider a test set of N LLC-congruent
addresses (N ≥ 2). To fix their cache level and state, the elements of the test
set first undergo the access sequences ( 1 - 4 ) as given by Table 5. Then, they
are written by the secondary device. Finally, the secondary device counts how
many remain in the LLC (cf. Section 3.2.2). All read and write operations are
repeated to remove the influence of the replacement policy, and we consider
10 000 measurements.

For all access sequences, we observe that subsequent secondary writes allocate
to the LLC, consistent with current understanding. However, consider what

135



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

happens as we now apply contention to the DDIO region. This contention is
achieved with secondary writes to another uncached contention set (access
sequence 1 , which is known to lead to DDIO allocation).

For sequences 1 and 3 , no test lines remain after DDIO contention (i.e.,
they were allocated to the DDIO region). However, for sequences 2 and 4 ,
both addresses remain in the LLC (i.e., they must have been placed elsewhere).
In conclusion, cache lines in specific states are secondary write-allocated to the
LLC, but outside of the DDIO region.

In the remainder of this work, we refer to this unknown region as the DDIO+

region. We can only speculate on the condition to be placed in this region, but
we observe modified lines to be assigned to it (e.g., sequences 2 and 4 ). The
rationale for this behavior is not immediately obvious and we assume it to be
an undocumented performance optimization.
Associativity. We now infer the structure of the LLC set, starting with the
associativity of the DDIO and DDIO+ subregions.

For the DDIO region, the secondary device writes N congruent addresses
and counts how many remain in the LLC. The associativity is the largest N for
which none are consistently evicted. As expected, we observe an associativity
of D.

For the DDIO+ region, we perform a similar experiment, but with access
sequence 4 preceding the secondary write. We observe a DDIO+ associativity
of 2, irrespective of D.
The LLC set. To learn which ways belong to the DDIO/DDIO+ region on
the Xeon Silver, we extend the mapping technique of Farshin et al. [10]. In
particular, it uses Intel CAT [19] to let a software process evict specific LLC ways
as specified by a bitmask. The correlation between the bitmask and evictions
of DDIO/DDIO+ lines reveals the composition of these regions.

For the DDIO region, we use a CAT mask that spans D ways, i.e., the DDIO
associativity. First, the secondary device writes D test lines. Then, software
generates contention in the ways specified by the mask. Finally, the secondary
device counts the test lines in the LLC. The mask corresponding to the D
leftmost ways results in all test lines being evicted; shifting it one to the right
evicts D − 1 lines, etc. No lines are evicted if the mask does not overlap with
any of the D leftmost ways.

For the DDIO+ region, we use a similar methodology with a 2-way CAT
mask. Access sequence 4 is used to produce lines in the DDIO+ state. The
CAT mask corresponding to the 2 rightmost ways results in both DDIO+ lines
being evicted.
LLC Model. Section 5 summarizes the inferred LLC structure for our local
platform (Xeon Silver). CPU memory traffic allocates to all ways in the set.
Secondary devices only write-allocate to the DDIO or DDIO+ regions (depending
on the state of the written line). The DDIO region is contiguous and has

136



Double Trouble: Combined Heterogeneous Cache Attacks

associativity D, growing from the most-significant ways. The DDIO+ region is
contiguous and has associativity 2, and covers the least-significant ways. In
the event that the DDIO and DDIO+ regions overlap (i.e., for D ≥ 10), the
least-significant ways accommodate both lines in the DDIO and DDIO+ state.

D = 2D = 2D = 2D = 2D = 2 10 9 8 7 6 5 4 3 2 1 0
D = 3 10 9 8 7 6 5 4 3 2 1 0
D = 4 10 9 8 7 6 5 4 3 2 1 0
D = 5 10 9 8 7 6 5 4 3 2 1 0
D = 6 10 9 8 7 6 5 4 3 2 1 0
D = 7 10 9 8 7 6 5 4 3 2 1 0
D = 8 10 9 8 7 6 5 4 3 2 1 0
D = 9 10 9 8 7 6 5 4 3 2 1 0
D = 10 10 9 8 7 6 5 4 3 2 1 0
D = 11 10 9 8 7 6 5 4 3 2 1 0

DDIO+DDIO

Finding #1 (rev.): Spatially limited LLC interaction.
Another portion of the LLC set is malleable by secondary devices. This region
(DDIO+) has associativity two.

6 Revisiting Cache Eviction
With magnet ways (#3), this section challenges the concept of minimal eviction
sets through efficient eviction with fewer elements than the cache associativity
(#1). First, as a stepping stone of independent interest, we evict shared lines
from a victim’s private caches without directory contention. For simplicity, we
consider the default DDIO configuration (D = 2).

6.1 Eviction without Coherence Directory
Algorithm 3 evicts a shared line from remote victim caches with the shared
access method. First, the attacker prepares the target in L2, and waits. If the
victim accesses the target, it resides in attacker and victim L2, and the LLC (cf.
Figure 4d). Second, the attacker evicts it from the LLC which, if it was indeed
there, invalidates the copies in all L1/L2 caches. Otherwise, the target remains
in the attacker’s L2. This invalidation is not strictly required for non-inclusive
LLCs, but happens in practice [67]. LLC eviction (line 3) is implemented by
accessing W lines with threads on different cores (Figure 4d).
Algorithm 3 can also be inverted, making it slightly more complex (details in
Appendix D). Surprisingly, the inverted version can evict lines from L2 caches

137



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

Algorithm 3 Eviction without Coherence Directory (CD)

L2V L2A LLC L2V L2A LLC
T T

T T T T
T

On the right, the LLC and L2 states of victim (L2V ) and attacker (L2A) are shown for
each operation on the target address (T).

1: att_CpuRead
2: vic_CpuRead ? ✓ (access) ✗ (no access)

3: att_CpuEvict_LLC
4: att_CpuTime RAM L2

in remote sockets.

6.2 Reduced Eviction
Combined attackers can produce magnet ways, i.e., empty ways to attract
incoming lines (cf. Section 3.2.3). Assuming a magnet way in the DDIO region, a
combined attacker can evict a target line from a victim cache by, first, triggering
its LLC allocation (where the magnet will attract it) and second, evicting it from
the DDIO region with only two congruent addresses. Without magnet ways, the
target may be installed anywhere in the LLC set, and W addresses are needed
to reliably evict it.

Algorithm 4 Eviction with Reduced Eviction Set

L2 LLC
1 0

1 0 M M
M M1 0

T M M1 0

M T1 0 T M M1 0

3 21 0 T 3 21 0

3 2 T M M1 0 3 2 T M M1 0
T M M3 2 T M M3 2

On the right, the attacker’s L2 and LLC (with DDIO+ and DDIO ) are shown, with
lines 0-3, LLC magnet ways (M), and target (T) .
Prepare:

1: att_SecWr (0,1)
2: att_CpuWr (0,1)
3: att_SecWr (0,1)
4: att_CpuRd (T)

Wait:
5: ? vic_CpuRd (T) ✓ (access) ✗ (no access)

Measure & Reinstate:
6: att_SecWr (2,3)
7: att_CpuTime (T) RAM L2
8: att_CpuWr (2,3)
9: att_SecWr (2,3)

Reiterate from line 5, swapping the roles of 0-1 and 2-3.

Algorithm 4 shows how to produce and exploit DDIO magnet ways using a

138



Double Trouble: Combined Heterogeneous Cache Attacks

no stress stress -m 1 stress -m 8

E
x

.
T

im
e

(m
s)

F
ai

l
R

at
e

(%
)

Stress # of Ex. Time Fail Rate
Level Verf. (ms) (%)

No
0 0.10 6.72
1 0.12 0.00
4 0.17 0.00

-m 1
0 0.09 69.27
1 0.12 11.99
4 0.17 3.00

-m 8
0 0.08 97.25
1 0.13 43.15
4 0.19 3.24

(a) Detailed evaluation for
D = 2 (default)

3 4 5 6 7 8 9 1011

3
6
9

12

2
0

0 Verification
1 Verification
4 Verifications

3 4 5 6 7 8 9 1011

3
6
9

12

2
0

3 4 5 6 7 8 9 1011

3
6
9

12

2
0

3 4 5 6 7 8 9 1011

50

100

2
0

3 4 5 6 7 8 9 1011

50

100

2
0

3 4 5 6 7 8 9 1011

50

100

2
0

(b) The effect of D (on X axis) on the perfor-
mance and accuracy.

Figure 7: Performance of HW-accelerated eviction set construction on our Xeon
Silver setup (EV =W , avg. of 1000 runs).

tiny eviction set of four addresses (0-3). Strictly speaking, two congruent lines
suffice. However, to make eviction repeatable, we suffer from DDIO+ behavior
and rely on our model LLC structure to overcome it (cf. Section 5).

First, the secondary device writes lines 0-1, followed by CPU writes. After-
wards, the secondary device writes them again, while the CPU reads the target
line. This terminates the preparation phase, with the target in the attacker’s
L2, two magnet ways in the DDIO region, and lines 0-1 in DDIO+.

Then, the attacker waits. If the victim accesses TARGET, it moves to the LLC
DDIO region, attracted by the magnet ways. Afterwards, secondary writes to
2-3 evict the DDIO region (0-1 cannot serve this purpose, as they are modified
and allocate to DDIO+ instead). A CPU timing measurement of TARGET reveals
it to reside either in L2 (no victim access) or in RAM (victim access). Finally,
2-3 are written by the CPU and the secondary device, recreating the magnet
ways in the DDIO region and placing 2-3 in DDIO+ instead of 0-1. The next
iteration can now start, and 0-1 swap roles with 2-3.

The reduced eviction can also be inverted, making it work across CPU
sockets on our platforms (cf. Appendix D).

7 Implementation
We work with the FPGA-accelerated cloud platforms of Section 2.6 and im-
plement a hardware (HW) module to demonstrate our findings. This section
explains its functionality.
Read-Write Primitives. As we work with Intel FPGAs, we use Open
Programmable Acceleration Engine (OPAE) to integrate FPGA acceleration
into software applications. OPAE divides the FPGA’s programmable fabric into
two parts; a blue-bitstream pre-programmed by Intel, and a green-bitstream

139



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

that implements the user’s hardware accelerators. The blue-bitstream acts as
a bridge between accelerators and software, and provides them with Direct
Memory Access (DMA).

DMA and a timing source are essential components for cache-timing exper-
iments. With OPAE, a DMA operation consists of two transactions; one for
asserting memory read and write requests, and another to monitor the com-
pletion of this request. To measure latency, we create a counter-based timing
source on the FPGA, similar to Weissman et al. [62]. It counts the cycles that
expire between requests and replies (at 400 MHz), allowing to distinguish the
memory level that serves the request (L2, LLC or RAM), as given in Appendix A.
The FPGA counter is not synchronized to the CPU counter.

The hardware design also features a set of software-configurable registers to
instruct the actions of the accelerator, e.g., to perform a timed read or write at
a given address. More sophisticated instructions are described next.
Fast Eviction Set Finding. We extend the hardware module with an
advanced state machine that implements the fast eviction-set finding algorithm
introduced in Algorithm 1.

The algorithm is fully encapsulated in hardware and proceeds without
additional interaction. Moreover, a few settings are exposed to users. Essential
settings are the target for which to find the eviction set, the desired size, the
number of verification repetitions, and the timing threshold (LLC vs. RAM
accesses). The delay between consecutive memory operations can also be
configured to ensure their in-order execution.
Access Sequences. The hardware module supports encapsulating commonly
used sequences of read and write operations to reduce HW-SW interaction
overhead, e.g., for fast reduced eviction (cf. Section 6.2). Again, the configuration
of these sequences happens with software-accessible registers.

8 Evaluation and Discussion
This section evaluates three applications of our accelerator, demonstrating:
(1) the speed and accuracy of eviction set construction, (2) a covert channel
encoding information in the number of evicted lines, and (3) reduced eviction
in practice.

8.1 HW-Accelerated Eviction Set Finding
8.1.1 Performance

Figure 7 presents the performance and accuracy of hardware-accelerated evic-
tion set construction, measured on our local Xeon Silver platform (8 slices, cf.
Section 2.6). We consider sets of size EV =W =11, and conduct the measure-

140



Double Trouble: Combined Heterogeneous Cache Attacks

ments on both idle and noisy systems. For the latter, we use stress to emulate
moderate and high noise, resp. with -m 1 and 8.

We report end-to-end execution time, i.e., we do not exclude any preparation
steps or interactions with hardware. The existence of even a single false positive
in the set classifies it as failed, even if the remainder of the set is correct. The
candidate verification (cf. Algorithm 2) significantly reduces such false positives
at the cost of slightly increased runtime.

Hardware-accelerated eviction set construction is very effective. On our
local platform, the accelerator can find an LLC/CD eviction set in around 120 µs
on idle systems, or 200 µs under stress. For the default DDIO configuration, the
throughput of one accelerator (in EVS/s, eviction sets per second) reaches more
than 8000 EVS/s for noise-free systems, and around 5000 EVS/s for very high
noise. Such speeds allow to map out the entire 11 MB LLC in ≈2 s. For reduced
eviction sets (EV = 4), the average throughput is around 16 kEVS/s. On the
ACE platforms, the accelerator is roughly 3 times slower, since the slice count
increases from 8 to 28.
Influence of D. For non-default DDIO configurations (i.e., D > 2), the
performance of eviction set construction decreases with D. As D grows, the
associativity perceived by the accelerator increases (#1), which increases the
relative weight of the Discover phase. Especially for high noise pressure, this
impacts the performance for two main reasons (cf. Section 4.2.3). First, during
discovery, more guesses are required to detect a congruence, as detection may
only occur for every D−1 congruent guesses. Second, false positives have adverse
effects, as all DISCOVER_FOUND are discarded upon a failed verification test, in
contrast to just a single discarded address during Expand. All in all, our eviction
set construction is still accurate and faster than related work. Moreover, D = 2
is the default configuration. To our knowledge, no benchmarking tools exist to
help users decide when to change it.

8.1.2 Comparison

Expansion-based Methods. As covered in Section 4.2, expansion-based meth-
ods work well when the congruence test is non-disturbing. To our knowledge,
the only other expansion-based method2 is our work on Prime+Scope [47],
which obtains a repeatable congruence test by exploiting the properties of lines
that are cached in multiple levels simultaneously.

Although the algorithm based on Prime+Scope bears a similar structure
to Algorithm 1, it differs in several important aspects. First, it is concerned
with a different threat model. Second, the non-destructive measurement relies
on fundamentally different properties. Third, the Prime+Scope version for

2One exception is Prime+Prune+Probe [46], which applies to a new class of randomized
protected caches that are not in use today.

141



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

non-inclusive Intel LLCs needs to orchestrate two attacker threads on different
cores to allocate in the LLC (cf. Figure 4d). Finally, CPU-based attackers
perceive the full LLC associativity, in contrast to the accelerator (e.g., D=2).
Reduction-based Methods. For reference, we also compare the accelerator
to reduction-based methods. Yan et al. [66] proposed the state-of-the-art
reduction algorithm for non-inclusive caches. As their code is not available, we
are unable to fairly compare to them. Moreover, their work may be amenable
to similar optimizations as those shown for inclusive caches [60]. To have a
meaningful data point for comparison, we compare with the highly optimized
implementations for inclusive caches by Vila et al. [60]. Arguably, this serves
as an upper bound for performance in non-inclusive caches, because of the
obstacles identified in prior work [66]. On the other hand, our accelerator is
agnostic to LLC inclusion, so we expect it to apply to inclusive LLCs with similar
performance.
Results. Like the accelerator, we measure the performance of the Prime+
Scope [47] code on the local Xeon Silver platform. For the Vila et al. [60] code,
we match their CPU and configuration. Importantly, the number of slices is
the same for both platforms under consideration (cf. Section 4.2.3).

As Table 6 shows, our HW accelerator achieves good end-to-end performance.
Compared to the algorithm based on Prime+Scope (P+S), it is another order
of magnitude faster. Depending on the noise level, it is between two and three
orders of magnitude faster than reduction-based methods, at the cost of a small
decrease in accuracy.

Note, however, that the threat model for the hardware accelerator is different.
It assumes a secondary device but no code execution, whereas CPU-only methods
assume code execution (native or otherwise [40, 60]) but no secondary device.

8.1.3 Robustness, Simplicity and Stealth

Robustness. The accelerator maintains good performance for high noise (cf.
Figure 7), with several contributing factors. The timing source is a noise-free
HW counter, and interference with other processes is limited to the DDIO region.
The algorithm itself is also robust. False-negative errors only increase the
execution time, and most false-positive errors are detected by Algorithm 2.
Provided that the Discover phase is successful, remaining false positives do not
affect the other addresses in the Expand phase, as every address is individually
tested for congruence. In contrast, reduction algorithms may have to implement
backtracking [60] to avoid getting stuck, as false positives trigger the removal
of congruent addresses.
Simplicity. Fully described by a few lines of pseudocode, the accelerator
is simple to understand. It does not use hierarchy-specific techniques, e.g.,
directory contention or helper eviction sets [66]. The accelerator interacts with
a D-way set-associative view of the LLC which, at least for small D, is a great

142



Double Trouble: Combined Heterogeneous Cache Attacks

Table 6: End-to-end performance (1000 runs) of our accelerator compared
to Prime+Scope [47] on our local setup, and optimized reduction-based
algorithms [60].

Impl. CPU & Stress Error Rate Exec. Time
Cache Level (%) (msec)

Ours∗
Skylake-SP

Xeon Slv. 4208
11-way LLC

Non-Inclusive

no 0.0 0.17
-m 1 0.5 0.17
-m 8 3.5 0.17

P+S
[47]

no 0.0 1.11
-m 1 0.0 1.24
-m 8 0.3 3.56

[60]†
Skylake

Core i5-6500
12-way LLC

Inclusive

no 0.0 19
-m 1 0.0 35
-m 3 0.0 206

∗ for the default DDIO configuration with D = 2.
† with initial set size 120, while other works do not use an initial set.

simplification. Furthermore, it is oblivious to associativity, replacement policy
and noise in low-level caches. The same FPGA bitstream is used on all our test
platforms.
Stealth. Due to its speed, eviction set construction is hard to detect at
runtime. Moreover, the timing source is implemented on the FPGA fabric, so
accesses to it are invisible to the CPU or blue-bitstream. Finally, it is essentially
a state machine, requesting read and write operations to the blue-bitstream
and timing them. Its resource utilization is very low, making it a hard-to-notice
attachment. Appendix F covers detailed utilization numbers for the accelerator,
showing that it barely increases compared to Intel’s Hello World baseline.

8.2 Amplitude-Based Covert Channel
We implement a covert channel between combined attackers, demonstrating the
precise control over the cache hierarchy with only a few congruent addresses.
It transfers information by manipulating DDIO (D=2) and DDIO+ ways simul-
taneously and independently. Moreover, due to non-perturbing reads (#2), it
reliably encodes amplitude information in the signal (i.e., the number of evicted
ways), which performs poorly for traditional attackers due to self-eviction [37].
It does not use shared memory; the parties use their own eviction sets (agreed
upon in advance, e.g., using HW-acceleration).

Figure 8 shows two versions; one over the DDIO region, and one that combines
DDIO/DDIO+ regions. Both consist of three stages. First, the receiver primes

143



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

PR: Receiver puts A,B into DDIO,
and C,D into DDIO+.

TX: Sender may replace A,B,C,D
with 1,2,3,4.

PB: Receiver checks if A,B are still
in DDIO, and C,D in DDIO+.

Receiver Sender

PR
CpuWr(C,D) CpuWr(3,4)
SecWr(C,D)
SecWr(A,B)

TX SecWr(3/4)
SecWr(1/2)

PB SecTime(C,D)
SecTime(A,B)

Figure 8: Covert channel with prime (PR), transmit (TX) and probe
(PB). Symbols are always transferred over DDIO, and optionally over DDIO+

(optional operations underlined). Parties use their own eviction sets, resp.
A,B,· · · and 1,2,· · ·

(PR) the DDIO lines (if applicable also in DDIO+). Second, the sender transmits
(TX) a symbol by overwriting zero, one or two of the receiver’s DDIO (and
DDIO+) lines. Third, the receiver probes (PB) its lines to determine how many
have been evicted.

The DDIO channel encodes a ternary symbol, i.e., log2 3 = 1.58-bits per
cache set. For transferring 512 packets of 256 symbols, we achieve 264 Kbps
bandwidth (BW) with 2.26 % Symbol Error Rate (SER). The DDIO/DDIO+

channel encodes two ternary symbols, i.e., log2(3·3) = 3.17 bits per cache set.
In this case, the BW is slightly lower at 211 Kbps with 2.20 %SER, because of
extra interfacing with hardware.

Comparison. We use a shared timestamp counter to synchronize transmitter
and receiver, as well as a known preamble. Our implementation is open to
optimizations, e.g., common engineering practices like synchronization or error
correction, or transmission over multiple sets.

Although the covert channel only serves to illustrate the fine-grained spatial
capabilities of combined attackers, we briefly compare it with closely related
implementations. Weissman et al. [62] build a covert channel from FPGA to
CPU. It achieves 95 Kbps and, like ours, can be improved. Yan et al. [66]
establish a cross-core channel using CD contention on a non-inclusive LLC, and
achieve 0.2 Mbps. To our knowledge, the fastest cross-core covert channels
with unshared memory achieve 2–4 Mbps [45, 42, 47]. Ours is an order of
magnitude slower, mostly because of hardware interfacing overhead, but is open
to improvements.

144



Double Trouble: Combined Heterogeneous Cache Attacks

Table 7: Eviction patterns for shared lines, their eviction set size, eviction rate,
number of accesses and attacker model

Pattern EV Ev. Rate Accesses VCC VCS A

CD-11-9 [66] 11 ≈ 25% 216 ✓ ASTD
CD-13-9 [66] 13 ≈ 95% 234 ✓ ASTD
CD-14-9 [66] 14 ≈100% 252 ✓ ASTD

L2-16-9/LLC-11 [66] 16+11 ≈100% 144+22 ✓ ASTD

No CD (Alg. 3) 11 ≈100% 22 ✓ ✓ ASTD
Reduced (Alg. 4) 4 ≈100% 6 ✓ ✓ ACMB

8.3 Reduced Eviction
Eviction Rate. Table 7 compares the eviction rates of our new patterns with
those reported by Yan et al. [66] for shared lines. For all patterns, the goal is to
evict a shared line, currently in another core’s L2, from the hierarchy. We achieve
a near-perfect eviction rate, with fewer accesses and the bonus of working across
sockets (cf. Appendix D). Our CD-less eviction (Algorithm 3) implements LLC
eviction with two threads each writing EV=11 addresses once, generating direct
LLC contention. The reduced eviction implements Algorithm 4.

Yan et al. observe that using unshared lines to evict shared lines from remote
L2 caches through the CD has unsatisfactory results. To overcome this, they use
shared lines, instantiating two threads that repeatedly access a CD eviction set;
e.g., two threads iterating 9 times over a set of size EV =13 (CD-13-9 in Table 7)
yield an eviction rate of ≈ 95% and 234 accesses. They also propose a pattern
with contention on L2 (EV =16) and CD (EV =11) simultaneously, and attribute
its success to bypassing the CD replacement policy. Our work suggests that the
underlying mechanism is actually an instance of Algorithm 3; replacing shared
access (Figure 4d) with L2 contention (Figure 4a) to transfer the line to LLC.
Hence, what appeared to be CD contention is actually LLC contention.
End-to-end Example: AES. We demonstrate the feasibility of reduced and
cross-socket eviction with the OpenSSL 1.0.1e AES T-Tables implementation,
a now-standard target for side-channel research. We do not claim algorith-
mic improvements and simply refer to the illustrative synchronous first-round
attack [41, 56] to show the feasibility of our techniques (cf. Appendix E for
attack details). In short, the attacker evicts the cache lines containing the
T-Tables, triggers encryptions with known plaintext bytes, and monitors access
patterns to the tables. Through statistical differences between table accesses,
the attacker learns the upper half of every secret key byte.

We use the hardware accelerator to construct eviction sets and assume the
victim binary to reside in small read-only pages. To showcase reduced eviction,
we early-abort the accelerator for EV =4. To overcome the writing limitation,
we construct the eviction sets indirectly for addresses with the same small page

145



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

offset, and then test whether they contend with the tables in the LLC/CD. This
test can work with several mechanisms (cf. Figure 4). We select Algorithm 4 for
its speed and reliability. To construct all necessary sets on the Xeon Platinum
8180 (ACE1, 28 slices), we observe a median runtime of 194 ms and perfect
accuracy over 100 runs.
Limitations. For reduced eviction, if both magnet ways are occupied before
TARGET is installed, e.g., due to noise, the target ends up outside of the DDIO
region. Though this rarely happens on our setup, normal behavior can be
reinstated by evicting the full set once. For cross-socket reduced eviction, the
target can become stuck in the victim socket if the victim reads it while still in
the attacker socket’s LLC.
Results. In the absence of noise, reduced eviction consistently reveals the sub-
keys within 300 traces, both in same- and cross-socket attacks (cf. Appendix E).
However, robustness in the latter case is significantly lower, and we recommend
using an eviction set with full associativity (cf. Algorithm 5).

9 Related Work
9.1 Cache-based Side Channel Attacks

Table 8: Non-inclusive Cache Attacks (Shared Memory)

Contribution Flushless Cross-Socket Single-Thread Reduced Eviction

Lipp [30] ✓ ✗ ✓ ✗
Irazoqui [22] ✗ ✓ ✓ ✗

Yan (F+R) [66] ✗ ✗ ✓ ✗
Yan (E+R) [66] ✓ ✗ ✗ ✗

Ours (ASTD) ✓ ✓ ✓ ✗
Ours (ACMB) ✓ ✓ ✗ ✓

Non-inclusive Cache Attacks. Lipp et al. [30] mount Flush+Reload
and Evict+Reload on small non-inclusive ARM caches. Irazoqui et al. [22]
illustrate that Flush+Reload applies to all caches in the same coherence
domain, even across sockets. These attacks bypass non-inclusive LLCs by
relying on self-eviction [30], or using clflush [22]. Yan et al. [66], in contrast,
propose a multi-threaded Evict+Reload to reliably evict the shared target
(cf. Section 8.3). We show an Evict+Reload without CD manipulation (ASTD),
and one with four addresses (ACMB), refuting that eviction sets must cover the
full cache associativity. Table 8 positions our work within this subset of related
work.

In the absence of shared memory, the attacker can mount Prime+Probe [66]
or Prime+Scope [47] on the coherence directory, leveraging our eviction set

146



Double Trouble: Combined Heterogeneous Cache Attacks

construction.
Cross-CPU. Yao et al. [69, 68] present a flushless cross-socket covert channel
based on non-uniform memory access and cache coherence. They rely on a
cooperating transmitter to evict the target (i.e., covert channel). Our cross-
socket channel does not have this requirement, showing that shared memory is
a security risk even when clflush is disabled and the victim is the only tenant
on a CPU socket. A noteworthy non-cache cross-socket side-channel attack is
Drama [45].
Secondary devices. Frigo et al. [11] accelerate microarchitectural attacks with
the GPU, which is also connected to the cache hierarchy (though differently than
DDIO devices). Their focus is Rowhammer-based fault injection [24, 53, 58, 39].

Weissman et al. [62] instantiate the secondary device as an FPGA. They
leverage non-destructive reads (#2) to accelerate Rowhammer, and study cache
attacks from CPU to FPGA and vice-versa. However, the statically constrained
DDIO region provides challenges for FPGA-based attacks.

Kurth et al. [27] also construct eviction sets with a secondary device, i.e., a
NIC. Their network-based threat model faces more challenges: it takes about
five minutes to produce 64 eviction sets over the network. However, since
properties #1 and #2 hold, our eviction set algorithm may accelerate it.

Taram et al. [55] describe a CPU process that infers network memory access
patterns by the NIC (based on DDIO).

9.2 Countermeasures
Constant-time programming successfully thwarts the combined attacker explored
in this paper, as it removes vulnerable code patterns. It is now common practice
to harden cryptographic implementations, and several techniques have been
proposed, e.g., [28, 8, 1, 49, 64]. However, access patterns can reveal other secrets,
such as user input [50, 13], browsing behavior [40, 54], or model parameters [65].
Additionally, capturing all side-channel leaks remains difficult in practice [51].

Hardware-based countermeasures have attracted attention in recent years,
and are generally based on, e.g., partitioning the cache [7, 32], randomizing
the address-to-index mapping [61, 48, 63], or approximating fully associative
caches [6, 52]. For non-inclusive cache hierarchies, SecDir [67] hardens the
coherence directory explicitly. However, existing hardware-based proposals non-
trivially interact with DDIO/DDIO+ regions. Additionally, such countermeasures
must make explicit all potential transfers between cache levels, as undocumented
transfers (cf. Section 6.1) might endanger their security.

Runtime detection using on-die counters [5, 71, 4] could be generalized to
combined attackers. It should be investigated whether they sufficiently capture
accelerator activity. For FPGAs, they can be embedded in the blue bitstream.

Some works propose limiting access to high-resolution timers [59, 35]. Such
countermeasures do not generally thwart combined attacks, as they can bring

147



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

their own timing source.
Invalidating the findings of Section 3.2 counteracts the results in this work.

The accelerator would suffer if writes occupy the full set (#1), or reads al-
ter LLC state (#2). However, the performance implications are significant,
and increasing DDIO access to the cache improves attacks from accelerators
alone [27, 62]. The precise manipulation of the cache hierarchy (#3) seems to
be fundamental to DDIO and is non-trivial to disable. An exception is the unex-
pected cross-socket transfer (cf. Section 6.1). This transaction is not essential
to maintain coherence. We believe it to be a performance heuristic.

10 Conclusion
Heterogeneous multi-tenancy is a dangerous trend, providing attackers with ever-
more expressive primitives to manipulate shared microarchitectural state. This
work exposed undocumented behavior in non-inclusive Intel caches and DDIO.
Leveraging these insights, we developed a proof-of-concept FPGA hardware
accelerator to shatter speed records for eviction set construction, build covert
channels with multi-bit symbols, and evict lines from the cache with tiny sets.

Acknowledgments
We thank the anonymous USENIX Security reviewers for their insightful feed-
back. This research is partially funded by the European Research Council (ERC
#695305) and the Flemish Government (FWO project TRAPS). It is also sup-
ported by CyberSecurity Research Flanders (#VR20192203) and a generous gift
from Intel. Antoon Purnal is supported by a grant of the Research Foundation
- Flanders (FWO).

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael

Emmi. Verifying Constant-time Implementations. In USENIX Security Symposium,
2016.

[2] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing Memory Density by using
KSM. In Proceedings of the Linux Symposium, 2009.

[3] Daniel J Bernstein. Cache-timing attacks on AES, 2005.
[4] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth. Cacheshield:

Detecting Cache Attacks Through Self-observation. In ACM Conference on Data and
Application Security and Privacy (CODASPY), 2018.

[5] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha
Sethumadhavan, and Salvatore Stolfo. On the Feasibility of Online Malware Detection
with Performance Counters. ACM SIGARCH Computer Architecture News, 2013.

148



Double Trouble: Combined Heterogeneous Cache Attacks

[6] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache: Hybrid
Side-Channel-Resilient Caches for Trusted Execution Environments. In USENIX Security
Symposium, 2020.

[7] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel
Attacks. ACM Transactions on Architecture and Code Optimization (TACO), 2012.

[8] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. CacheAudit: A Tool
for the Static Analysis of Cache Side Channels. In USENIX Security Symposium, 2013.

[9] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić. Make the Most
Out of Last Level Cache in Intel Processors. In EuroSys Conference, 2019.

[10] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić. Reexamining
Direct Cache Access to Optimize I/O Intensive Applications for Multi-hundred-gigabit
Networks. In USENIX Annual Technical Conference (ATC), 2020.

[11] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand Pwning Unit:
Accelerating microarchitectural attacks with the GPU. In IEEE Symposium on Security
and Privacy (S&P), 2018.

[12] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard.
Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016.

[13] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-level Caches. In USENIX Security Symposium,
2015.

[14] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games–Bringing Access-
based Cache Attacks on AES to Practice. In IEEE Symposium on Security and Privacy
(S&P), 2011.

[15] Ram Huggahalli, Ravi R. Iyer, and Scott Tetrick. Direct Cache Access for High Bandwidth
Network I/O. In 32st International Symposium on Computer Architecture (ISCA), 2005.
doi:10.1109/ISCA.2005.23.

[16] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing Side Channel Attacks
against Kernel Space ASLR. In IEEE Symposium on Security and Privacy (S&P), 2013.

[17] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk
Sunar. Cache Attacks Enable Bulk Key Recovery on the Cloud. In Cryptographic
Hardware and Embedded Systems (CHES), 2016.

[18] Intel. Intel Data Direct I/O Technology Overview. https://www.
intel.co.jp/content/dam/www/public/us/en/documents/white-papers/
data-direct-i-o-technology-overview-paper.pdf, 2012.

[19] Intel. Intel CAT: Improving Real-Time Performance by Utilizing Cache Allocation
Technology. https://software.intel.com/content/www/us/en/develop/articles/
introduction-to-cache-allocation-technology.html, 2015.

[20] Intel. Open Programmable Acceleration Engine: Libraries. https://github.com/OPAE/
opae-libs/blob/master/include/opae/buffer.h#L28, 2021.

[21] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared Cache Attack
That Works Across Cores and Defies VM Sandboxing – and Its Application to AES. In
IEEE Symposium on Security and Privacy (S&P), 2015.

[22] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor Cache Attacks. In
ACM SIGSAC Asia Conference on Computer and Communications Security (AsiaCCS),
2016.

149



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

[23] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel Address Space Lay-
out Randomization with Intel TSX. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors. ACM SIGARCH Computer
Architecture News, 2014.

[25] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre Attacks: Exploiting Speculative Execution. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[26] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Advances in Cryptology - CRYPTO, 1996.

[27] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. NetCAT: Practical Cache Attacks From the Network. In IEEE Symposium on
Security and Privacy (S&P), 2020.

[28] Adam Langley. ctgrind—checking that functions are constant time with Valgrind, 2010.
URL https://github.com/agl/ctgrind, 2010.

[29] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia, Michael Kaminsky,
David G Andersen, O Seongil, Sukhan Lee, and Pradeep Dubey. Architecting to Achieve
a Billion Requests per Second Throughput on a Single Key-value Store Server Platform.
In International Symposium on Computer Architecture (ISCA), 2015.

[30] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard.
ARMageddon: Cache Attacks on Mobile Devices. In USENIX Security Symposium,
2016.

[31] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown: Reading Kernel Memory from User Space. In USENIX Security
Symposium, 2018.

[32] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and
Ruby B Lee. Catalyst: Defeating Last-level Cache Side Channel Attacks in Cloud Com-
puting. In IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2016.

[33] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level Cache
Side-Channel Attacks Are Practical. In IEEE Symposium on Security and Privacy
(S&P), 2015.

[34] Ilias Marinos, Robert NM Watson, and Mark Handley. Network Stack Specialization For
Performance. ACM SIGCOMM Computer Communication Review, 2014.

[35] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp: Rethinking
Timekeeping and Performance Monitoring Mechanisms to Mitigate Side-channel Attacks.
In International Symposium on Computer Architecture (ISCA), 2012.

[36] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. Reverse Engineering Intel Last-Level Cache Complex Addressing
Using Performance Counters. In Research in Attacks, Intrusions, and Defenses (RAID),
2015.

[37] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the Other Side: SSH
over Robust Cache Covert Channels in the Cloud. In Network and Distributed System
Security Symposium (NDSS), 2017.

150



Double Trouble: Combined Heterogeneous Cache Attacks

[38] David Mulnix. Intel® Xeon® Processor Scalable Family Technical Overview.
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/
winnt/kernel.htm, 2017. Accessed: 2020-08-13.

[39] Onur Mutlu. The RowHammer Problem and Other Issues we may Face as Memory
Becomes Denser. In Design, Automation & Test in Europe (DATE), 2017.

[40] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis.
The Spy in the Sandbox: Practical Cache Attacks in JavaScript and Their Implications.
In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015.

[41] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermeasures:
The Case of AES. In Cryptographers’ Track at the RSA Conference on Topics in
Cryptology (CT-RSA), 2006.

[42] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. Lord of the Ring(s):
Side Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical. In USENIX
Security Symposium, 2021.

[43] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. IACR
Cryptol. ePrint Arch. 2002/169, 2002.

[44] Colin Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.
[45] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.

DRAMA: Exploiting DRAM Addressing for Cross-cpu Attacks. In USENIX Security
Symposium, 2016.

[46] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. Systematic Analysis
of Randomization-based Protected Cache Architectures. In IEEE Symposium on Security
and Privacy (S&P), 2021.

[47] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope: Overcoming
the Observer Effect for High-Precision Cache Contention Attacks. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2021.

[48] Moinuddin K. Qureshi. CEASER: Mitigating Conflict-based Cache Attacks via Encrypted-
address and Remapping. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[49] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code constant
time? In Design, Automation & Test in Europe (DATE), 2017.

[50] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, You, Get
off of My Cloud: Exploring Information Leakage in Third-party Compute Clouds. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2009.

[51] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong, and Yuval Yarom.
The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations. In
IEEE Symposium on Security and Privacy (S&P), 2019.

[52] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE: Mitigating Conflict-Based Cache
Attacks with a Practical Fully-Associative Design. In USENIX Security Symposium,
2021.

[53] Mark Seaborn and Thomas Dullien. Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges. Black Hat, 2015.

[54] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi
Oren, and Yuval Yarom. Robust Website Fingerprinting Through the Cache Occupancy
Channel. In USENIX Security Symposium, 2019.

[55] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Packet Chasing: Spying on
Network Packets over a Cache Side-channel. In International Symposium on Computer
Architecture (ISCA), 2020.

151



Antoon Purnal, Furkan Turan and Ingrid Verbauwhede

[56] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES, and
Countermeasures. Journal of Cryptology, 2010.

[57] Furkan Turan and Ingrid Verbauwhede. Trust in FPGA-Accelerated Cloud Computing.
ACM Computing Surveys, 2020.

[58] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémentine
Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer:
Deterministic Rowhammer attacks on mobile platforms. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2016.

[59] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating Fine Grained
Timers in Xen. In ACM Workshop on Cloud Computing Security (CCSW), 2011.

[60] Pepe Vila, Boris Köpf, and José F. Morales. Theory and Practice of Finding Eviction
Sets. In IEEE Symposium on Security and Privacy (S&P), 2019.

[61] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting Software Cache-
based Side Channel Attacks. In International Symposium on Computer Architecture
(ISCA), 2007.

[62] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio, Thomas Eisenbarth,
and Berk Sunar. JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU
Platforms. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020.

[63] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel Gruss,
and Stefan Mangard. SCATTERCACHE: Thwarting Cache Attacks via Cache Set
Randomization. In USENIX Security Symposium, 2019.

[64] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MicroWalk:
A Framework for Finding Side Channels in Binaries. In Annual Computer Security
Applications Conference (ACSAC), 2018.

[65] Mengjia Yan, Christopher Fletcher, and Josep Torrellas. Cache Telepathy: Leveraging
Shared Resource Attacks to Learn DNN Architectures. In USENIX Security Symposium,
2020.

[66] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W. Fletcher, Roy H.
Campbell, and Josep Torrellas. Attack Directories, Not Caches: Side Channel Attacks
in a Non-Inclusive World. In IEEE Symposium on Security and Privacy (S&P), 2019.

[67] Mengjia Yan, Jen-Yang Wen, Christopher W Fletcher, and Josep Torrellas. SecDir: a
secure directory to defeat directory side-channel attacks. In International Symposium
on Computer Architecture (ISCA), 2019.

[68] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are Coherence Protocol States
Vulnerable to Information Leakage? In IEEE Symposium on High Performance Com-
puter Architecture (HPCA), 2018.

[69] Fan Yao, Guru Venkataramani, and Miloš Doroslovački. Covert timing channels exploiting
non-uniform memory access based architectures. In Proceedings of the on Great Lakes
Symposium on VLSI, 2017.

[70] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-channel Attack. In USENIX Security Symposium, 2014.

[71] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Cloudradar: A Real-time Side-channel
Attack Detection System in Clouds. In Research in Attacks, Intrusions, and Defenses
(RAID), 2016.

[72] Li Zhao, Ravi R. Iyer, Srihari Makineni, Don Newell, and Liqun Cheng. NCID: a
Non-inclusive cache, Inclusive Directory Architecture for Flexible and Efficient Cache
Hierarchies. In Conference on Computing Frontiers, 2010.

152



Chapter 8

Systematic Analysis of
Randomization-based
Protected Caches

Alea iacta est.

Julius Caesar

Publication data

Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede, “Systematic Analysis of Randomization-based Protected Cache
Architectures”. IEEE Symposium on Security & Privacy, 2021, pp. 987–1002

For compactness, the appendices are not included. Please refer to the full
version of the paper [154].

Contributions

Principal author.

153



Systematic Analysis of
Randomization-based Protected Cache

Architectures
Antoon Purnal1, Lukas Giner2, Daniel Gruss2 and Ingrid

Verbauwhede1

1imec-COSIC, KU Leuven 2Graz University of Technology

Abstract. Recent secure cache designs aim to mitigate side-channel attacks
by randomizing the mapping from memory addresses to cache sets. As
vendors investigate deployment of these caches, it is crucial to understand
their actual security. In this paper, we consolidate existing randomization-
based secure caches into a generic cache model. We then comprehensively
analyze the security of existing designs, including Ceaser-S and Scat-
terCache, by mapping them to instances of this model. We tailor cache
attacks for randomized caches using a novel Prime+Prune+Probe tech-
nique, and optimize it using burst accesses, bootstrapping, and multi-step
profiling. Prime+Prune+Probe constructs probabilistic but reliable
eviction sets, enabling attacks previously assumed to be computationally
infeasible. We also simulate an end-to-end attack, leaking secrets from
a vulnerable AES implementation. Finally, a case study of Ceaser-S
reveals that cryptographic weaknesses in the randomization algorithm
can lead to a complete security subversion.
Our systematic analysis yields more realistic and comparable security
levels for randomized caches. As we quantify how design parameters
influence the security level, our work leads to important conclusions for
future work on secure cache designs.

1 Introduction
Caches reduce the latency for memory accesses with high locality. This is crucial
for performance but also an inherent side channel that has been exploited in many
microarchitectural attacks, e.g., on cryptographic implementations [3, 35, 56, 15],
user input [41, 34, 13, 33], system secrets [14, 17, 10], covert channels [28, 12, 31],
and transient-execution attacks like Spectre [20, 6, 4] and Meltdown [24, 49].

154



Systematic Analysis of Randomization-based Protected Cache Architectures

Randomized
mapping

Ideal-case
security

Real-world
security

Rekeying condition
Section V-VI Section VII

Section VIII

Figure 1: Security argument for randomized caches.

Due to the limited size of the cache, some addresses are bound to be allocated
to the same cache set, i.e., they are congruent and contend for the same resources.
While some attacks are enabled by the attacker’s capability to flush cache lines,
others work purely with this cache contention. The basic building block for
measuring cache contention is the eviction set, a set of congruent addresses.
Accessing the addresses in this eviction set brings the cache into a known state.
Measuring how long this takes, tells the attacker whether some process worked
on congruent addresses since the last eviction.

To mitigate contention-based attacks, cache hardware can be augmented
to so-called protected cache architectures. Some designs reduce interference
through better isolation [42, 18, 52, 57, 58, 25, 19, 43], partial isolation (e.g.,
locking cache lines) [53, 9], or fully associative subcaches [8]. Another promising
line of work is randomized cache architectures [53, 54, 22, 26, 27, 47, 39, 40,
55], which randomize the otherwise predictable mapping of memory addresses
to cache sets. Several recently proposed randomized caches [47, 39, 40, 55]
evaluate a dedicated hardware mapping to perform the randomization on the
fly. Consequently, these designs only slightly change the interface to the outside,
and can maintain efficient and scalable sharing of caches. However, even if the
mapping is (cryptographically) unpredictable, there are cache collisions due to
the limited size of the cache. Hence, existing proposals incorporate some notion
of rekeying, i.e., renewing randomization at runtime. This limits the temporal
window in which eviction sets can be used for an attack.

While randomized cache architectures show promise to thwart eviction-based
cache attacks with reasonable overhead, supporting them with quantified se-
curity claims (a default for cryptographic algorithms) is challenging. Figure 1
depicts the established security argument. The randomized mapping is used as
a trust anchor for security in ideal attack conditions, yielding a (conservative)
estimate for the rekeying condition. Currently, the security transfer from the
randomization mapping to ideal-case security is not well-understood, which we
highlight by improving state-of-the-art attacks by orders of magnitude. As-
suming that system activity increases the attack complexity, ideal-case security
implies real-world security. However, it is unclear to which extent the rekeying
condition can be relaxed.

The high interest in these novel cache designs and their seeming relevance to
mitigate a growing list of attacks motivates the following fundamental questions
of this paper:

155



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Can we accurately compare security levels for randomized caches? How realistic
are security levels reported for secure randomized caches? Do secure randomized
caches provide substantially higher security levels than regular caches?

In this paper, we systematically cover the attack surface of randomization-
based protected caches. We consolidate existing proposals into a generic ran-
domized cache model, and identify attacker objectives in such caches. We then
analyze this model, resulting in a comprehensive and parametrized analysis,
serving as a baseline for future secure caches and their analysis.

We present Prime+Prune+Probe (PPP), a technique to find probabilistic
but reliable eviction sets in randomized caches. Improving the approach by
Werner et al. [55], PPP dramatically outperforms traditional eviction, turning
infeasible attacks (e.g., >1030 accesses) into feasible ones (e.g., <107 accesses).

We also analyze security under complicating system effects, e.g., noise
and multiple victim accesses, culminating with successful key recovery from a
vulnerable AES implementation.

Latency constraints associated with the cache hierarchy have inspired de-
signers to invent new [39, 47] or repurpose existing [47] low-latency structures
for the randomization mapping. Security arguments then rely on their alleged
unpredictability. We falsify this assumption for Ceaser-S, and propose that
future designs use mappings that resist extensive cryptanalysis.

Contributions. In summary, our main contributions are:

• We consolidate existing proposals into a generic randomized cache architec-
ture model.

• We derive a comprehensive and parametrized analysis of all computation-
based randomized cache architectures. We improve noise-free attacks by
several orders of magnitude.

• We analyze non-ideal effects in profiling on randomized caches, and demon-
strate the first end-to-end attack.

• We study the security requirements of the core randomized mapping and
show that the security of Ceaser-S can be completely subverted, even with
frequent rekeying.

Outline. Section 2 provides background. Section 3 presents our generalized
cache model. Section 4 generalizes contention-based attacks for randomized
caches. Section 5 presents ideal-case eviction set construction, Section 6 describes
optimizations, and Section 7 considers aggravating system effects. Section 8
shows how exploiting internals can completely subvert security guarantees. Sec-
tion 9 discusses results and compares existing proposals. Section 10 concludes.

156



Systematic Analysis of Randomization-based Protected Cache Architectures

2 Background
2.1 Caches and Cache Hierarchies
CPUs hide memory latency using caches to buffer data expected to be used
in the near future. Caches are organized in cache lines. In a directly mapped
cache, each memory address can be cached by exactly one of the cache lines,
determined by a fixed address-based mapping. If a memory address can be
cached in any cache line, the cache is called fully-associative. If a memory
address can only be cached in a (fixed) subset of cache lines, the cache is called
set-associative. Addresses mapping to the same set are called congruent. Upon
a cache line fill request, a replacement policy determines which cache line in the
set is replaced. The so-called cache line tag uniquely identifies a cached address.
CPU caches can be virtually or physically indexed and tagged, i.e., cache (set)
index and the cache line tag are derived from the virtual or physical address.

CPUs have multiple cache levels, with the lower levels being faster and
smaller than the higher levels. If all cache lines from a cache A are required to
be also present in a cache B, cache B is called inclusive with respect to cache A.
If a cache line can only reside in one of two cache levels at the same time, the
caches are called exclusive. If the cache is neither inclusive nor exclusive, it is
called non-inclusive. The last-level cache (LLC) is often inclusive to lower-level
caches and shared across cores to enhance the performance upon transitioning
threads between cores and to simplify cache coherency and lookups.

The L1 cache is often considered the lowest level cache. It is usually virtually
indexed and physically tagged. All higher-level caches are usually physically
indexed and physically tagged.

Again for performance, the last-level cache today is typically composed of
multiple independent slices, e.g., one slice per physical or logical core. Each
(physical) address maps to one of the slices. After selecting the slice, the
cache (set) index is selected as described before. The slices are interconnected,
e.g., by a ring bus, allowing all cores to access all last-level cache lines. The
mapping from physical addresses to slices has been reverse-engineered for certain
microarchitectures [29]. In this work, we focus on the complete mapping function
which combines the mapping from addresses to slices, sets, and lines.

2.2 Cache Attacks
Caches reduce the latency of memory accesses with temporal or spatial locality,
e.g., recent memory accesses. An attacker can observe the latency and make de-
ductions, e.g., on other recent memory accesses. The first cache attacks deduced
cryptographic secrets by observing the execution time [21, 36, 48, 3]. The best
techniques today are Flush+Reload [56] and Prime+Probe [35]. Flush+
Reload flushes an address, then waits, and by reloading determines whether

157



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

the victim accessed it in the meantime. While Flush+Reload requires a flush
instruction to remove a cache line from all cache levels, Evict+Reload [13]
uses cache contention. Both Flush+Reload and Evict+Reload only work
on (read-only) memory shared between attacker and victim. Prime+Probe [35]
overcomes this limitation. Prime+Probe measures cache contention instead
of memory latency. The attacker fills (primes) a subset of the cache (e.g., a
slice, a set, a line) and measures (probes) how long it takes. The time to fill
the subset is higher if a victim replaces an attacker cache line with a congruent
address.

Mounting Prime+Probe requires information about how addresses map
to cache lines, which can be gained implicitly in certain scenarios. This is
trivial for the L1 cache and, hence, the first Prime+Probe attacks targeted
the L1 cache [37, 35]. More recently, Prime+Probe attacks were mounted on
last-level caches [28, 34, 30, 23, 31].

Cache attacks based on cache contention generally consist of two phases. In
the profiling phase, the attacker finds a so-called eviction set, a set of addresses
with a high degree of contention in a subset of the cache. In the exploitation
phase, the attacker accesses this eviction set to bring the cache into a known
state. For Evict+Reload, the attacker uses it to evict an entire cache set
(including a target address) and to later on reload the target address to determine
whether it has been accessed in the meantime. Prime+Probe works similarly,
except that it does not reload the target address but accesses the eviction set
again to measure contention caused by victim memory accesses.

Early approaches for finding eviction sets were based on knowing addresses
and their congruence, and simply collected a set of such addresses. With address
information unavailable, the attacker instead starts with a set of addresses,
large enough to be a superset of an eviction set with high probability. Elements
are removed from this set until it has minimal size. Recently, this eviction set
reduction has been improved from quadratic to linear complexity in the size of
the initial set [51, 40].

2.3 Randomized Cache Architectures
State-of-the-art randomized cache architectures replace predictable address-to-
index mappings with deterministic but random-looking mappings. The original
proposals consider a software-managed look-up table, whereas newer designs
compute the randomized mapping on-the-fly in hardware.

2.3.1 Table-based architectures

RPCache [53] uses a permutation table to randomize the mapping from memory
addresses to cache lines. Occasionally updating the permutation aims to
mitigate statistical attacks. Random-fill cache [26] issues cache fill requests to

158



Systematic Analysis of Randomization-based Protected Cache Architectures

random addresses in spatial proximity instead of the accessed ones. Table-based
architectures face scalability issues, which are especially prohibitive for last-level
caches.

2.3.2 Computation-based architectures

Recent designs (Time-Secure Cache [47], Ceaser [39, 40], ScatterCache [55])
cope with this scalability problem by computing the mapping in hardware in-
stead of storing it. This computation should have very low latency. Given their
flexibility and scalability, computation-based designs are proposed for last-level
caches, which have the largest latency budget and are important to protect as
they are usually shared across cores.

2.3.3 Cache partitions

Algorithmic advances in eviction set construction [51, 40] have shown that only
randomizing the memory address is insufficient to protect against contention-
based cache attacks. As a key insight, Ceaser-S and ScatterCache partition
the cache and use the randomized mapping to derive a different cache-set index
in each of these partitions. Not only does this significantly raise the bar for
finding eviction sets, but it also hinders using them in the exploitation phase.

2.3.4 Rekeying

Even if the mapping from address to cache set in each partition is unpredictable,
the attacker can, over time, still identify sets of addresses contending in the
cache. Thus, randomized caches rely on rekeying, i.e., sampling a new key to
refresh the randomization. Selecting an appropriate rekeying condition marks
an important security-performance trade-off.

2.3.5 Security analysis

Computation-based randomized caches show promise to mitigate cache-based
side-channel attacks. Although all proposals come with first-party security
analyses, they currently lack a systematic and complete analysis (that we rely
on and know, e.g., for cryptographic schemes).

3 Generic Randomized Cache Model
In this section, we present a generic randomized cache model that covers all
proposed computation-based randomized caches to this date. We use it to cover
the attack surface of randomized caches systematically. In later sections, we
will quantify the influence of each parameter on the residual attack complexity.

159



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Figure 2: Computation-based randomized cache model

3.1 Randomization-based Protected Cache Model
Although some protected cache designs fix the cache configuration, we consider
a generic nw-way set-associative cache with 2b sets (i.e., b index bits). Then,
let N = nw · 2b denote the number of cache lines. As with traditional caches,
the atomic unit of the mapping from addresses to cache sets is the cache line,
for which we assume a generic size of 2o bytes (i.e., o line offset bits). The
model makes abstraction of the line offset bits, as they do not contribute to the
randomization.

In accordance with traditional caches, processes cannot monitor the data
in the cache directly, nor can they infer to which cache way a certain memory
address is allocated. The only interface available is the access latency when
reading specific addresses, i.e., it is low in case of a cache hit and high in case
of a miss. In some practical cases, an attacker might also have access to flush
semantics. However, our attacks do not rely on it and we thus assume it to be
disabled architecturally.

3.1.1 Generic model

Figure 2 depicts our generic computation-based randomized cache, featuring
the following components:
1 The memory address a is the primary input to the randomization design.
a is either a physical or virtual address, impacting the degree of control an
attacker has over a.
2 The key K captures the design’s entropy (unpredictability).
3 The security domain separator s optionally differentiates the randomiza-
tion for processes in different threat domains.
4 The randomized mapping RK(a, s) is the core of the architecture. It is a
pseudorandom mapping, i.e., deterministic but random-looking, for which the
algorithmic description is publicly known, but the key K is not (Kerckhoff’s

160



Systematic Analysis of Randomization-based Protected Cache Architectures

Table 1: Instantiating the generic model for existing cache designs.

Design K s P R

Unprotected ∅ ∅ 1 slice + bits
Tsc [47] keys / select RKs

(a) 1 HashRP / RM
Ceaser [39] key ∅ 1 Llbc
Ceaser-S [40] key ? 2-4 Llbc
ScatterCache [55] key RK(a, s) nw Qarma [1]

principle). The LLC slicing function can be encapsulated in R (i.e., one
randomized cache), or not (i.e., per-slice randomized caches).
5 The randomized cache is divided into P partitions, where 1 ≤ P ≤ nw.

An input address a has, in general, a different index in each of these partitions.
To accommodate this, R has to supply P · b pseudorandom bits. We assume P
divides nw.
6 When caching a, one of the partitions is truly randomly selected, and the
corresponding cache-set index in this partition is determined based on the
pseudorandom output of R. Then, one of the cache lines in this set is replaced
by a, adhering to the replacement policy within the partition. We consider
random replacement (RAND) and least-recently used (LRU). Under attack, several
stateful policies can degenerate to LRU [11].
7 The rekeying period T denotes the condition for entropy renewal. It
should be strict enough to maintain high security, and loose enough to maintain
high performance.

3.1.2 Instantiating Caches

Table 1 shows how existing designs instantiate this model. The key K can be a
cryptographic key (Ceaser-S, ScatterCache), a set of cryptographic keys,
or selection of a random permutation (Time-Secure Cache). Time-Secure
Cache (Tsc) implements domain separation with a per-process key, Scat-
terCache via additional input to the mapping, and Ceaser-S mentions it
without implementation details. Traditional unprotected caches, Ceaser, and
Tsc all have one single partition. In ScatterCache, P =nw (the maximum),
whereas Ceaser-S recommends 2≤P ≤4. The rekeying condition T can use,
e.g., the wall-clock time, the number of accesses to the cache, or more complex
policies.

3.1.3 Software Simulator

We implement our model as a C++ randomized LLC simulator, which we
parametrize and use to obtain all experimental results in this work. For
simulation purposes, many well-analyzed cryptographic primitives can be used
for RK . We use AES because of its hardware support.

161



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

3.2 Attacker Models

We now systematically cover the attack surface of randomized caches and define
relevant attacker models in such caches.

Leveraging a provable security methodology from cryptography, we propose
to analyze the randomized mapping R ( 4 ) separately from how it is used. On
the one hand, we consider black-box attacks, which assume that R behaves
ideally. In this case, processes cannot efficiently recover K, find inputs to RK

that produce output collisions, or infer any information about cache set indices
in one partition based on observations in another. On the other hand, we also
consider shortcut attacks that exploit R directly. Physical side-channel attacks
on R (e.g., using power consumption) are out of scope for this work but can be
addressed orthogonally with established approaches [7].

We further assume full attacker control over input address a ( 1 ) as the
mapping R should dissolve any attacker control regardless of the input. The
key K ( 2 ) is considered full entropy (e.g., generated by a TRNG). If security
domains ( 3 ) are supported, we assume that an attacker cannot obtain the
same identifier s as the victim. The attacker cannot observe the output of R
( 5 ) directly, but only gather metadata about it by measuring cache contention.
Finally, the attacker cannot modify the rekeying condition ( 7 ) (e.g., it is
enforced in hardware).

In line with Figure 1, we consider the following three attacks:

Aideal In an ideal black-box attack, the mapping R is considered to behave
ideally, and the system is completely noise-free. The victim performs only a
single memory access, exactly the one the attacker wants to observe later (cf.
Sections 5 and 6).
Anonid In a non-ideal black-box attack, Aideal is extended with aggravating
system assumptions, and serves to study the increase in attack complexity with
respect to Aideal, e.g., noise and multiple victim accesses (cf. Section 7).
Ashort In a shortcut attack, internals of the mapping R are exploited to find
eviction sets much faster than in the black-box case, i.e., a shortcut is found
(cf. Section 8).

Existing analyses [40, 55] study attacker Aideal, as it describes the transfer of
security properties from the mapping RK to the cache architecture (cf. Figure 1).
It allows selecting a conservative rekeying condition for a specific design. Besides
its general applicability, it also covers some practical settings. For instance,
trusted execution environments like Intel SGX are subject to precise control
over victim execution [32], i.e., precisely stepping to a single instruction (e.g., a
memory access) and even repeating it an arbitrary number of times [50, 44].

162



Systematic Analysis of Randomization-based Protected Cache Architectures

Figure 3: Generalized eviction sets are based on partial congruence
(nw =6, P =3, b=log2 8=3)

4 Exploiting Contention on Randomized Caches
This section introduces generalized eviction to overcome the challenges intro-
duced by randomized caches. Next, it generalizes traditional attacker objectives
to randomized caches.

4.1 Generalizing Eviction
4.1.1 Full congruence

In an eviction set for a traditional cache, every address ai in this set is fully
congruent with x. Hence, if x is currently cached, each ai has the potential to
evict it.

In a randomized cache, an attacker can theoretically still find a set of
addresses that collide with the target address x in every partition. However,
the probability for a randomly selected address to be fully congruent with x is
2−bP , i.e., it plummets exponentially with P . Already for P ≥ 2, relying on
full congruence to construct eviction sets is highly impractical.

4.1.2 Partial congruence

To overcome the full congruence problem, one can also try to evict a target
address x based on partial congruence. This approach, introduced by Werner
et al. [55] for special case P = nw, constructs an eviction set using addresses
congruent with the target in one partition only.

163



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

To understand eviction with partial congruence in general, consider Figure 3,
where the attacker wants to evict a target x in a toy randomized cache with
6 ways (nw =6), 8 sets (b=3) and 3 partitions (P =3). Assume the attacker
has found sets of addresses G1, G2, G3, satisfying that all elements in Gi are
congruent with x in partition i but not in the other partitions.

Eviction based on partial congruence is probabilistic. If x is allocated to
partition i, it could be evicted by Gi. An element in Gi can only contribute
to evicting x when it is also assigned to partition i; this assignment is truly
random (i.e., not pseudorandom). In what follows, we let a generalized eviction
set G for a target address x denote the superset of addresses that collide with
x in one partition: G =

⋃P
i=1 Gi.

4.1.3 Eviction probability

Given a target x to evict, we now derive the eviction probability pe as a
function of the size |G| of the generalized eviction set G. We assume that G
contains an equal share for every partition, i.e., |Gi | = |G|

P , (1 ≤ i ≤ P ). This
assumption holds probabilistically in practice, and we will show how it can be
met deterministically in Section 6.2.

For replacement policy RAND, the eviction probability generalizes the expres-
sion by Werner et al. [55]. Regardless of the partition in which x resides, |G|

P
addresses in G could evict it, each with probability n−1

w . Consequently, we have:

pe,RAND (|G|) = 1 −
(

1 − 1
nw

) |G|
P

For LRU, evicting x requires the attacker to evict the full set in the partition
in which x currently resides. This corresponds to the event that at least nw

P

out of the |G|
P addresses for the designated partition are actually mapped to

this partition. It is described by the complement of the cumulative binomial
with |G|

p trials, nw

P −1 successes and success probability 1
P :

pe,LRU (|G|) = 1 − binom
( |G|

P
,

nw

P
−1,

1
P

)

= 1 −

nw
P

−1∑

i=0

( |G|
P

i

)(
1
P

)i

·
(

1 − 1
P

) |G|
P

−i

Conversely, selecting the eviction probability pe fixes |G|, presented in Table 2
for different cache configurations and pe.

4.2 Generalizing Attacker Objectives
We now generalize eviction set objectives from traditional to randomized caches
and evaluate their utility.

164



Systematic Analysis of Randomization-based Protected Cache Architectures

Table 2: Generalized eviction set size for several instances.

RP pe nw =4 nw =8 nw =16
[%] P =2 P =4 P =2 P =4 P =8 P =2 P =4 P =16

RAND
50 6 12 12 24 48 22 44 176
90 18 36 36 72 144 72 144 576
95 22 44 46 92 184 94 188 752

LRU
50 6 12 14 28 48 30 60 176
90 14 36 24 60 144 42 100 576
95 16 44 26 72 184 46 116 752

A targeted eviction set for an address x is a set of addresses that, when
accessed, evicts x from the cache with high probability. The complexity and
utility of this objective depends on the capability of the attacker to access the
target address x.

The attacker can access x if it is an in-process address or resides in memory
shared between attacker and victim. By accessing x directly, the attacker can
measure its access latency. This objective is useful even in randomized caches,
e.g., for Evict+Reload side- and covert channels or to trigger direct DRAM
accesses for eviction-based Rowhammer [2, 11].

In the other case, the attacker does not learn the access latency of x, and
victim accesses to x are needed for constructing eviction sets. It is the primary
attack vector for randomized caches, as it represents the general scenario where
x is not accessible by the attacker (unshared memory), or accessible to the
attacker but decoupled in the cache for different security domains. In addition
to the previous objectives, generalized eviction sets in this setting are useful, e.g.,
for Prime+Probe side- and covert channels, or to extend transient execution
windows by evicting branch condition values from the cache.

An arbitrary eviction set (normally the easiest to construct [51]) is a set of
memory addresses that, when accessed, has a high probability that at least one
of its elements is evicted from the cache. Although this objective has proven to
be useful in traditional caches, e.g., for covert channels [31], its generalization
to randomized caches with P > 1 and security domains does not seem to map
to any known adversarial goals.

Takeaway: Generalize eviction to avoid full congruence.
Rely on partially congruent addresses to efficiently (but probabilistically)
measure contention in randomized caches.

5 Constructing Generalized Eviction Sets
The generalized eviction set G is the primitive at hand for attacking randomized
caches. Once G has been constructed, contention-based attacks like Prime+

165



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Probe are also possible in randomized caches, although with a larger set and
lower success probability (cf. Section 4.1). The major hurdle is the profiling
attack stage, i.e., constructing G itself. Purnal and Verbauwhede [38] performed
an initial study of this problem.

This section is concerned with the construction of G for a target address x,
using the capabilities of the black-box attack Aideal (cf. Section 3.2). We focus on
the general case of a target x that is not attacker-accessible (cf. Section 4.2), as
the security domain separator s lifts most attack objectives from the accessible to
the non-accessible case. We will later show the optimizations that can be applied
should they be accessible. Our novel profiling approach is generically applicable
and efficient, improving state-of-the-art methods by orders of magnitude.

Conventionally, eviction sets are constructed by reducing a large set of
addresses to a smaller set while maintaining a high eviction rate. This traditional
top-down approach is highly effective for P = 1, but both the size of its initial set
and its reduction step are strongly hindered by partitioning the cache (P > 1).
We cope with the sheer infeasibility of reducing the initial set by adopting a new
bottom-up approach: The attacker starts from an empty set and incrementally
adds addresses for which cache contention with the target address was observed.

When measuring contention with a target x that is not attacker-accessible,
the only available procedure is to prepare the cache state, wait for victim
execution, and observe changes in the cache state. Finding a generalized
eviction set G then comprises several iterations of this procedure. A successful
iteration is one that catches an access to x, and the success probability of an
iteration is the catching probability pc.

Takeaway: Adopt a bottom-up strategy to construct G.
In partitioned randomized caches, detecting contention is much more efficient
than detecting absence of contention.

5.1 Generic Prime+Prune+Probe
To maximize the probability of catching a victim access to x in a given iteration,
we develop a specialized Prime+Probe, tailored for finding eviction sets in
randomized caches.

5.1.1 Prime+Prune+Probe

An iteration begins with a prime step, where the attacker accesses a set of k
addresses, loading them into the cache. For k > 1, there can be cache contention
within this set. Thus, as a key step to eliminate false positives, the prune step
iteratively re-accesses the set. This forces all self-evicted addresses to be cached
again, at a potentially different location than before. The prune step terminates

166



Systematic Analysis of Randomization-based Protected Cache Architectures

Table 3: Catching probability pc as a function of cache and attack instance,
and whether the target address is cached or not.

RP Catching probability
pc,n (not cached) pc,c (cached)

RAND k′

N

nw∑
i=1

(
nw

i

) i2·k′i·(N−k′)nw−i

n2
w·Nnw

LRU ≈ 1−binom(k, nw

P −1, 1
P ·2b ) ≈ pc,n · pc,n(P −1)+1

P

as soon as no more self-evictions occur when accessing the set.
If there are still self-evictions after a few iterations, pruning becomes more

aggressive and additionally discards all addresses with high access latency (i.e.,
those evicted by another attacker address). Upon termination of the prune
step, the attacker has a set of k′ ≤ k known addresses guaranteed to reside in
the cache. Let mpr denote the total number of pruning iterations.

Now, the attacker triggers the victim to perform the access of interest
(i.e., access x, as in conventional Prime+Probe). This memory access evicts
one attacker address with probability pc, which depends both on the attack
parameter k and the randomized cache parameters (cf. Section 5.2). In the
probe step, the attacker accesses the set of k′ addresses again, adding addresses
with high latency to G (i.e., victim evicted them).

In Prime+Prune+Probe (PPP), the prune step is crucial and noise-
absorbing. Without it, the attacker cannot distinguish evictions due to victim
accesses from those by the priming set. By pruning, the attacker completely
removes these false positives. Appendix A experimentally relates pruning
parameters k, k′ and mpr for different cache configurations.

The Prime+Prune+Probe procedure is repeated until enough accesses
are caught and added to G. This constitutes the bottom-up approach; G is not
the result of shrinking a large initial set. Instead, it is built from the ground up.

5.1.2 Penalty for being cached

In case the target address x is already cached, a single PPP iteration must
both evict x and catch the access to x when it is reloaded into the cache.

The attacker can either (1) first evict x probabilistically, by accessing
many different addresses or other techniques; (2) apply PPP as-is, tolerating
a suboptimal catching probability pc. These strategies trade off the success
probability of one iteration (pc) with its execution time (number of accesses). In
what follows, we consider both a cached and uncached x. Any profiling strategy
then has higher pc than when the target is always cached, and lower pc than
when it is never cached.

167



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

5.2 Catching Probability pc

The catching probability pc is the success rate of one Prime+Prune+Probe
iteration and depends on the randomized cache (nw, b, P , policy RP) and attack
parameter k′. Table 3 establishes pc for several configurations. We distinguish
whether x is cached (denoted pc,c), vs. not cached (denoted pc,n).

5.2.1 Target is not cached (pc,n)

After prime and prune, the victim access to x caches it in a random partition,
and RK pseudorandomly determines the cache set within this partition.

For RAND, x evicts an attacker address with probability equal to the coverage
of the cache after pruning (i.e., pc,n = k′/N).

For LRU, x evicts an attacker address if there are at least nw

P addresses in
the attacker set that were mapped to the same cache partition and set of x
during prime and prune.

It can be approximated (and lower-bounded) by the complement of the
cumulative binomial with k trials, nw

P − 1 successes and binomial success
probability (P · 2b)−1, i.e., pc,n = 1− binom(k, nw

P −1, 1
P ·2b ). In practice, due

to self-evictions during pruning, the actual number of binomial trials is slightly
higher than k, resulting in increased pc,n.

5.2.2 Target is cached (pc,c)

Catching an access to a cached target x requires both evicting x and detecting its
reintroduction in the cache, resulting in a penalty on pc. The probabilities pc,c

(exact for RAND, approximate for LRU) are derived in Appendix B and collected
in Table 3. The penalty is maximal for k′ =1, being nw (RAND) or P (LRU), and
decreases with k′ as prime/prune implicitly evict an increasing cache portion.

Appendix C complements the theoretical analysis with empirical validation.
It also explores the relation between pc and k′, and the penalty on pc for a
cached target.

Takeaway: Add pruning to Prime+Probe profiling.
Pruning enables testing more than one guess per iteration. It improves
profiling for RAND and is essential for LRU.

6 Optimizations for Prime+Prune+Probe
This section describes optimizations of Prime+Prune+Probe for (A) total
cache accesses and (B) victim invocations. We then evaluate PPP strategies on
a range of cache instances.

168



Systematic Analysis of Randomization-based Protected Cache Architectures

6.1 Optimizing for total cache accesses
6.1.1 Burst Accesses

As derived, the catching probability pc,c (target already cached) holds at the
start of constructing the generalized eviction set G. As the elements of G
have explicitly been observed to collide with x, they can be accessed in burst
before the PPP iteration, essentially implementing a targeted eviction of x. As
profiling progresses and G grows, the burst becomes more successful, and the
penalty for a cached target shrinks, hence pc,c → pc,n asymptotically. The burst
access optimization thus hides the caching penalty. It applies to both RAND and
LRU, but the latter can be accelerated even more.

6.1.2 Bootstrapping

A PPP iteration for LRU succeeds if prime/prune fill the full set for x in
the designated partition. As G contends with x, we add G as bootstrapping
elements to the PPP set. Thus, filling the full set becomes more likely.

However, if a victim access to x evicts a bootstrapping element instead of a
PPP guess, the iteration is wasted: G was already known to contend with x.
This issue can be resolved by relying on LRU statefulness. Adding G at the end
of the PPP set ensures that PPP evictions precede bootstrapping evictions.

Bootstrapping implicitly implements burst accesses, and works very well for
LRU. However, it is unattractive for RAND.

Takeaway: Use elements in G to accelerate finding more.
Burst accesses hide caching penalty effectively as G grows.
Bootstrapping increases pc by helping to fill the LRU set.

6.2 Optimizing for victim invocations
We now explicitly minimize the required victim accesses Av. This is relevant,
e.g., for long victim programs or cases where victim runs are limited. We
decouple it as Av = c

pc
, relating it to accesses c needed to be caught (i.e.,

successful iterations), and to pc (i.e., success probability of one iteration).
Section 5 already maximized denominator pc with Prime+Prune+Probe.

We now independently minimize numerator c, forming a flexible profiling frame-
work to globally optimize Av. It first preselects candidate addresses that have
higher catching probabilities. The framework comprises three steps:
Step 1. Use Prime+Prune+Probe to find, for every partition i, one address
ai that collides with x in that partition.
Step 2. For each ai, construct a candidate pool with addresses that collide
with it in at least one partition.

169



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Step 3. Resume Prime+Prune+Probe with the obtained candidate pools
instead of randomly selected addresses.

The first step simply constructs a smaller G with PPP. Assume it needs to
continue until G contains at least one element for every partition. The expected
accesses to catch is then given by the coupon collector problem in statistics,
with one set of P coupons: E[c] = P (1 + 1/2 + · · ·+ 1/P ).

The second step finds addresses that contend with the ai obtained in Step
1, instead of profiling x directly. As the ai are attacker-accessible, their access
latency can be measured, and no victim accesses are required. Addresses that
contend with ai also contend with x with probability ≥ P −1, which is much
more likely than a randomly selected address (≈ 2−b).

The third step resumes PPP for target x with candidate pools for the ai.
Every iteration accesses the pools, prunes, triggers access to x, and probes. For
sufficiently large candidate pools, pc≈1, significantly reducing Av as compared
to Step 1.

Conceptually, the first and third step are similar in nature. They can also
be independently accelerated, as in Section 6.1.

We now explore the complexity and acceleration opportunities of Step 2.
As the access latency of the targets ai can be measured, catching probabilities
can increase, and there is no penalty if the ai are already cached. We again
distinguish between replacement policies, and measure the complexity in attacker
accesses Aa (as there are no victim accesses).

6.2.1 Optimizing Step 2 for RAND

We propose to construct the candidate pool through reverse Prime+Prune+
Probe. Let S = {a1, a2, . . . , ac} be the starting set obtained in Step 1. The
elements of S are now the targets instead of the victim address x. Every iteration
tries one random address guess g.

Prime+Prune+Probe (PPP) primes the cache with k guesses and ob-
serves eviction by the target. Reverse PPP instead primes the cache with
the targets S, prunes, accesses the guess g, then probes S. If accessing an
element of S is slow, say ak, we add g to the candidate pool for ak. Every
iteration has pc = c

N , and there are ≈ c + 1 attacker accesses per iteration, (i.e.,
very little pruning, and probe overlaps with the next prime). The expected
number of attacker accesses to obtain one element for the candidate pool hence
is E[Aa]≈N .

6.2.2 Optimizing Step 2 for LRU

For LRU, reverse PPP is even more effective. Again, let S = {a1, a2, . . . , ac} be
the set from Step 1, and let g denote a random address guess.

170



Systematic Analysis of Randomization-based Protected Cache Architectures

Assume the attacker primes the cache with S, prunes it, and observes self-
evictions. For LRU, this implies that S filled a full cache set ( nw

P lines). In this
case, the attacker does reverse Prime+Prune+Probe, where one iteration
consists of prime and prune with S, accessing g, and probe with S. If accessing
an element of S is slow in the probe step, say ak, we add g to the candidate pool
for ak. This approach has pc = 1

P ·2b , and there are ≈ c+1 accesses per iteration,
resulting in expected number of attacker accesses E[Aa] ≈ (c + 1) · P · 2b.

Importantly, as g collides with multiple ak in S, it very likely collides with
x and can directly be added to S. Thus, it immediately grows eviction set G
without accesses by the victim, bypassing Step 3. However, it can only be
started if priming S has observed self-evictions. Interleaving it with Step 1
implicitly generates new attempts at this precondition.

6.2.3 Flexibility of the Framework

The three-step framework flexibly instantiates randomized caches and attack
scenarios. If the victim program is tiny and executes continuously, all profiling
time is spent in Step 1. The shares of Step 2 and Step 3 grow as soon as the
victim program becomes the bottleneck in any way. Finally, if x is attacker-
accessible, reverse PPP from Step 2 is used immediately. The framework also
enables splitting G based on the partition of contention with x, making the
eviction probabilities (Section 4.1) exact.

Takeaway: Use elements in G to reduce victim accesses.
Filtering candidate addresses based on contention with G allows to (partially)
refrain from victim invocations.

6.3 Evaluation of profiling strategies

Figure 4 depicts victim and total cache accesses for the presented profiling
strategies, obtained from simulated profiling runs (cf. Section 3.1.3). We observe
a mostly linear progression in constructing G. One exception is reverse PPP,
where the construction of the candidate pools does not grow G immediately
(jump), but accelerates the profiling that follows.

Optimizations like burst accesses and bootstrapping improve both total and
victim accesses. In contrast, probabilistic full cache evictions and three-step
profiling incur a trade-off between total accesses and victim invocations. Of
course, one can freely interpolate between these extreme strategies.

171



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Figure 4: Effort of profiling strategies for RAND (top) and LRU (bottom),
measured as total (left) and victim (right) cache accesses, averaged for 104

simulated profiling runs. Cache instances are denoted RP(nw, b, P ). k is fixed
to N

2 (RAND) and 3N
4 (LRU) to isolate the influence of the strategy. Pruning

becomes aggressive from the sixth iteration, if not already terminated. Full
evictions between PPP iterations, if performed, use 2N addresses for LRU and
3N for RAND.

6.4 Influence of randomized cache instance
6.4.1 Sets, ways and partitions

Both profiling and exploitation in randomized caches are influenced by the
parameters of the instance. We investigate the effectiveness of PPP on several
instances for RAND and LRU. Figure 5 captures our findings, again based on
simulation (cf. Section 3.1.3).

Larger caches resist better against PPP. Increasing cache ways (nw) seems
to compare favorably to increasing sets (2b). While the latter only proportionally
prolongs profiling and does not affect exploitation, the former inhibits both
profiling and exploitation. In particular, |G| increases for the same exploitation
pe, and profiling is prolonged as |G| increases while the accesses per element of
G stay roughly the same.

Similarly, for the same cache dimensions (nw, b), both PPP profiling and
exploitation suffer from increased partitioning P . Especially for RAND, there is
no indication from our ideal-case analysis why one should not opt for maximal
partitioning. In general, we find that PPP can be hindered by tuning cache
sets, ways, and partitions, but not to the point where it becomes infeasible.
What really works is limiting the cache access budget for the attacker (i.e., a
strict rekeying condition).

172



Systematic Analysis of Randomization-based Protected Cache Architectures

Figure 5: Influence of randomized cache parameters, for RAND (left) and LRU
(right). To isolate the influence of the instance, profiling strategies are fixed
to burst accesses and k = N

2 for RAND, and bootstrapping and k = 3N
4 for

LRU. Instances are indicated as (nw, b, P ), and positioned for mean profiling
effort (y-axis, log scale), and eviction set size for exploitation (x-axis, log scale).
Vertical lines span the 5-95th percentiles (ranges indicated) over 103 simulated
runs.

6.4.2 Rekeying period

The difference between the profiling state of the art and rekeying period T is
the design’s security margin. Although tempting, setting T just low enough to
thwart known techniques does not account for potential improvements.

As an example to obtain (very) conservative rekeying periods, we now lever-
age the security of RK to derive minimal complexities to construct generalized
eviction sets of certain quality, i.e., with a lower bound on eviction probability
pe (e.g., pe ≥ 90%). We use the following central assumptions:
A RK is indistinguishable from a random function.
B Victim addresses of interest are not attacker-accessible.
C The eviction probability pe for G is lower-bounded.

As the target is not accessible to the attacker ( B ), she can only infer
accesses with PPP (cf. Section 5.1.1): bring cache in known state, wait for
victim execution, and probe.

To achieve an eviction rate pe ( C ), the profiling needs to catch at the very
least m≥ peP victim accesses to different partitions. Indeed, an attack with
pe > m

P has inferred information about partitions for which no memory access
has been caught. By contradiction with A , it cannot exist.

Beyond Aideal, we further contrive the setting in favor of the attacker. We
consider strongly idealized pruning (i.e., k′ =k and mpr =1), and a permanently
uncached target (i.e., pc = pc,n). Furthermore, we scope the algorithm as
catching a single access in m partitions, neglecting the necessary expansion to
full G.

173



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Table 4: Rekeying periods T to ensure that the success rate to construct G
with pe ≥ 95% is upper-bounded by 1/2{8,12,16,24,32}. The cache instance is
RAND(16, 13, 16) and all accesses are counted as cache hits (e.g., 10 ns)

T for profiling T/2 for profiling
Success Rate T time T time

2−8 40N ≈ 10 sec 80N ≈ 20 sec
2−12 29N ≈ 2.5 min 58N ≈ 5 min
2−16 22N ≈ 30 min 44N ≈ 60 min
2−32 9N ≈ 2 years 18N ≈ 4 years

A perfectly ideal Prime+Prune+Probe iteration then requires k accesses
for prime, k for prune, 1 for the victim access, and k to probe. Assuming the
attacker somehow manages to combine probe of one iteration with prime of
the next, we use 2k+1 accesses per iteration as lower bound.

We outline the idea for a randomized cache with random replacement. The
only degree of freedom in the idealized PPP is the number of addresses k in
the prime step. Indeed, their order or frequency does not impact the cache
coverage k

N .
Given a rekeying period of T cache accesses, the probability of observing at

least one access in at least m distinct partitions is (using a generalization of
the birthday problem in statistics):

max
k




T
2k+1∑

i=m

( T
2k+1

i

) ki(N − k)
T

2k+1 −i

N
T

2k+1

P∑

l=m

(P

l

) l∑

r=0

(−1)r
(l

r

)
(

l − r

P
)i




Conversely, Table 4 captures rekeying periods T that upper bound the fraction
of successful rekeying periods. Pessimistically assuming that every memory
access is a cache hit, it gives an expected continuous profiling time of having
one successful construction of G within the rekeying period. As the obtained G
is only useful for one period, Table 4 also includes the case where half of it is
used for exploitation. Note that these minimal efforts strongly depend on m,
and hence on the quality of G that can be tolerated for exploitation ( C ).

7 Lifting Idealizing Assumptions
In this section, we explore for the first time the more challenging attack Anonid

with complicating system activity (cf. Section 4), as opposed to the commonly
assumed Aideal.

We start with a victim program performing more memory accesses than
of interest to the attacker and present an end-to-end attack on a vulnerable

174



Systematic Analysis of Randomization-based Protected Cache Architectures

AES implementation. We then quantify the influence of random noise on
Prime+Prune+Probe.

The central assumption is that the attacker wants to profile specific addresses
of the victim and that the access probability of said addresses can be changed
via inputs to the victim.

7.1 Multiple Victim Accesses
In the profiling phase, the attacker identifies addresses of interest in a victim
program and distinguishes between them if there are multiple, requiring disjoint
eviction sets for each target. From this perspective, we model the execution of
victim code as a set of static and dynamic memory accesses. Static accesses
are performed regardless of the attacker’s input, i.e., code and data accesses
performed in all victim executions. Dynamic accesses do not always occur, e.g.,
state- or input-dependent code or data accesses.

The attack targets are one or more addresses that are accessed upon a
certain event the attacker wants to spy on [13]. Like Gruss et al. [13], we cannot
distinguish addresses in the static set, as the cause-effect relationship is the
same for all of them. Hence, for our attack, all targets are in the dynamic set.

To profile the cache addresses of interest, we propose a two-phase approach.
First, we collect a superset of addresses containing colliding addresses for all
static and dynamic cache lines. Second, we obtain disjoint sets of addresses
from the superset, each with colliding addresses for one target.

The attacker distinguishes static and dynamic accesses by the property that
dynamic accesses are statistically performed less often than static accesses,
which are always performed. With the assumption from the beginning of this
section, we consider a scenario where an attacker controls, e.g., via input, which
dynamic accesses the victim performs in any given execution. This control can be
exerted positively (i.e., a dynamic access is always performed for a specific input)
as well as negatively (i.e., a dynamic access is never performed for a specific
input). The latter scenario repeatedly calls the victim with inputs that cause it
to access all but one address. Thus, it can be separated from the superset, as
all other addresses in it are accessed eventually. In general, any manipulation
of access probabilities in the victim can be observed. This approach describes
a stronger attacker, as targeted addresses can be distinguished from others in
both the dynamic and static set in the same step.

7.1.1 Implementation

In the following, we focus on maximum partitioning P = nw, as non-random
replacement policies like LRU generally require special treatment but behave
predictably. We employ catching with intermediate full eviction. The analysis
of Section 5.2.1 applies. To generate distinct and large eviction sets for our

175



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

0 0.1 0.2 0.3 0.4 0.5
0

1 · 107

2 · 107

Noise Level ν

C
ac

he
M

is
se

s victim cache lines
1
5

10
20

Figure 6: Cache misses for creating a superset with 3 · nw addresses per victim
cache line, as a function of noise ν for different numbers of total victim cache
lines, k =1000 (avg. over 100 runs). Instance is RAND(8, 9, 8)

ntarget target addresses, we slightly modify the three-step approach described
in Section 6.2. All experiments are obtained in simulation (cf. Section 3.1.3).

To find sets of addresses ai, in Step 1, we first construct the previously
described superset using Prime+Prune+Probe (Section 6.2). Instead of only
one victim memory access, all nstat static and ndyn dynamic victim accesses
are now observed by the attacker. To identify a enough colliding addresses for
all targets, we construct a superset of at least nw ·(nstat+ndyn) addresses. The
expected amount of memory required to find a collision in a specific way is
cachesize

nw
, though higher confidence requires more. We can apply the coupon

collector’s problem (cf. Section 6.2) for an estimated factor of coupon(nw)
nw

, but as
more addresses need to be profiled, the probability to catch enough addresses for
all targets decreases. Consequently, this step requires a number of repetitions,
depending on the prime parameter k.

Next, we separate unwanted addresses from target addresses within the
superset. To this end, we call the victim with inputs that exclude exactly one of
the ntarget cache lines. By repeatedly evicting the cache, calling the victim with
the required parameters, and measuring accesses in the superset, we generate
a histogram for all target addresses. After a certain number of repetitions,
addresses that are never evicted by the victim are very likely to collide with
the targeted address.

Repeating this process ntarget times, we get disjoint sets of addresses for each
target cache line. Step 2 and Step 3 can be applied to these sets of addresses
(ai) to construct the final generalized eviction sets like in the single-access case.

From our experiments (cf. Figure 6), we estimate that the number of cache
misses (the largest factor of the execution time) increases sub-linearly with
the total amount of accesses by the victim (nstat +ndyn). This is because
the catching probability pc increases with ntarget. The superset’s separation
depends linearly on ntarget and the overall size of the superset.

176



Systematic Analysis of Randomization-based Protected Cache Architectures

7.1.2 End-to-end Attack on AES T-Tables

We choose the 10 round T-tables implementation of AES in OpenSSL 1.1.0g
as an example, as it is a well-known target for cache attacks [3, 35, 45, 13].
We perform the One-Round Attack, described by Osvik et al. [35], and thus
recover 64 bits in the 16 upper nibbles of the 16-byte key (see Appendix D).

The parameters for this attack are nstat =27 and ndyn =65. With ntarget =64,
the 4 T-tables are a difficult attack target, as the profiling time scales linearly
with ntarget.

For profiling, we require AES runs that access all but the target address,
for each target. We can prepare 64 such key/plaintext pairs offline. All AES
runs are recorded as memory access traces with the Intel PIN Tool [16] and
injected into the simulator (cf. Section 3.1.3) at the appropriate times. Lacking
more efficient eviction methods, we rely on probabilistic full cache eviction. In
total, eviction accounts for ≈ 90% of all accesses during the attack, which in
turn makes the superset-splitting step of the profiling the largest contributor
to the overall runtime. Because we assume no restriction on the number of
encryptions, we do not perform Step 2 for this attack, as pruning the generated
candidate pools would also require the costly splitting phase. Instead, we see
that using fewer colliding addresses for each target (cf. Table 5) still performs
well. We can compensate for the lower detection probability by increasing the
number of encryptions during the exploitation phase.

We use cache parameters from modern Intel processors: 8 slices (with a
slicing function [29]) of 1 MB each, so each slice is a randomized cache with
nw = 8/16 and b = 11. We run the same attack for P = nw = 8/16 and P = 2,
with replacement policies random and LRU. As seen in Table 5, the attack is
generic enough for all configurations, without special considerations for LRU.
The variance in the number of addresses found per target increases for P =2,
especially for LRU, but since this specific attack sums over the hits on different
addresses, this effect is mitigated for the end result (see Appendix D). For P =2,
we speed up the attack by reducing the cache lines used for full cache eviction
from 2N to 1.5N , as well as reducing the superset size (cf. Section 6.4.1).

This end-to-end implementation is not optimal, as there are many parameters
that could be optimized. Nonetheless, we can see that cache attacks can still
be executed in a reasonable time frame. If we model the attack as a mixture of
sequential accesses for full cache evictions and timed random accesses for the
sets, we can calculate the average attack times shown in Table 5. For this rough
estimate, we use access times measured on a real system with the same miss
rates (i7-8700K @ 3.60GHz, sequential access: ≈11.4c, timed (rdtsc) random
miss: ≈235c, hit: ≈222c).

177



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Table 5: End-to-end attack on T-table AES for different configurations (means
over 100 runs). nslices =8, b=11. Where not shown, standard deviations are
< 0.5% of the mean.

nw P policy misses [109] hits [109] #AES ∅ collisions/addr. correct nibbles est. t [min]
8 8 n/a 12.03 3.59 56663 20.47± 3.61 15.90± 0.33 1.58
8 2 RAND 2.78 2.25 23682 15.52± 3.37 16.00± 0.00 0.63
8 2 LRU 3.21 1.75 26060 17.74± 7.53 15.94± 0.28 0.78
16 16 n/a 46.27 9.25 157072 37.91± 5.65 15.77± 0.45 6.89
16 2 RAND 4.69 3.91 39192 26.62± 5.85 15.93± 0.26 1.32
16 2 LRU 7.85 2.63 66640 26.99± 11.66 15.75± 0.51 2.60

Takeaway: Unpredictability requires key agility.
Frequent rekeying is essential to maintain the benefits of randomization, even
in non-ideal conditions.

7.2 Influence of Noise
In the ideal case (Aideal), there is no noise from memory accesses by the attacker
process itself, nor the victim, or any other process in the system (including the
operating system). Section 7.1 already implicitly includes noise generated by
the victim’s code execution. We now additionally consider noise introduced by
other system activity. We make the simplifying assumption that noise accesses
are random and occur at a rate of ν random accesses for every attacker access.

Multiple steps of the (unmodified) profiling algorithm from Section 6.2 are
affected by noise. Spurious memory accesses during the prune step increase
the number of pruning iterations mpr significantly and reduce the size k′ of the
resulting set. The probe step samples noise in addition to the collisions with
the targeted victim cache line.

Figure 7 and Figure 8 show both effects. Though the unmodified prune
step terminates, the resulting set size k′ can be seen to decrease quickly with
ν, while the number of pruning iterations mpr increases. Hence, with noise,
the attacker could explore the PPP parameter space in favor of a smaller k.
Figure 8 also shows a faster decrease in correct collisions for higher k, while the
cost of pruning grows.

Alternatively, the attacker can consider early-aborting pruning, i.e., termi-
nating prune before it is entirely free of misses. Indeed, a large part of the
pruning iterations are no longer due to self-evictions, but due to sampling noise.
The false positives introduced by the early-abort are then removed in a later
stage.

The separation phase from Section 7.1 is effective at filtering false positives
caused by noise during PPP, since static victim accesses, dynamic victim

178



Systematic Analysis of Randomization-based Protected Cache Architectures

0 0.1 0.2 0.3 0.4 0.5
0

1,000

2,000

Noise Level ν

k’
k′, k =

100
1000

nw · 2b−1

0

50

100

m
p

r

mpr, k =
100

1000
nw · 2b−1

Figure 7: Pruning mpr and k′ as a function of noise ν, for various k (average
over 100 runs). Instance is RAND(8, 9, 8)

0 0.1 0.2 0.3 0.4 0.5

40

60

80

Noise Level ν

V
ic

tim
C

ol
lis

io
ns

[%
]

k
100

1000
nw · 2b−1

Figure 8: Percentage of caught addresses in the superset that genuinely collide
with victim addresses in exactly one way, as a function of ν for various k (avg.
over 100 runs). Instance is RAND(8, 9, 8)

accesses, and false positives exhibit different behavior in the separation phase.
In contrast to static or dynamic accesses, false positives occur only in some
runs, leading to multiple runs with 0 accesses. Hence, they appear in more than
one set in the end and can be removed.

Figure 6 shows the total number of cache misses for the generation of
supersets for victims of different total sizes (nstat +ndyn). These supersets
contain exactly 3 · nw · (nstat+ndyn) addresses that collide with victim cache
lines in exactly one way. They additionally contain non-colliding addresses
introduced by noise and self-eviction in the proportion shown in Figure 8, which
is removed during separation. We can see that the number of cache misses (and
by extension, the runtime) for this step grows approximately linearly with noise.

7.3 Infrequent victim events
In the case where an event in the victim happens only once or a limited number
of times (e.g., user input), the probe set G needs to be large enough to achieve a
very high detection probability, which places more weight on accurate profiling
compared to 7.1.2. On the other hand, when events trigger accesses to multiple
cache lines, all of them can be used for detection. Attacks will mostly need to
be asynchronous, which necessitates some form of continuous monitoring. We

179



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

leave an investigation of practical implementations for future work.

8 Shortcut Attacks
In this section, we consider attack Ashort and draw attention to the soundness of
the randomized mapping by achieving shortcuts during a case study on Ceaser
and Ceaser-S.

In particular, we demonstrate how weaknesses in their common randomized
mapping allow us to reliably construct eviction sets without any memory accesses.
We first describe Low-Latency Block Cipher (LLBC), the Ceaser-specific
implementation of the mapping RK . Drawing inspiration from differential
cryptanalysis, we show how input differences propagate through the LLBC, and
we derive an expression for precomputing address differences that systematically
yield cache set collisions, independent of key, partition, and address.

We describe the attack first for Ceaser [39] before tackling the generalized
and improved Ceaser-S [40].

8.1 Low-Latency Block Cipher in Ceaser(-S)
Ceaser instantiates RK by encrypting the input address a with a custom
LLBC with 40-bit blocks and 80-bit key. In particular, it divides the input
address in two equally sized (left-right) chunks a = (L || R) and produces an
output encrypted address RK(a) = (L’|| R’). From this output, the lowermost
b bits determine the cache set index: s = ⌊RK(a)⌋b = ⌊R’⌋b.

The encryption proceeds as a keyed four-stage Feistel network (depicted
in Figure 9). Each stage instantiates a round function F (X, K), taking 40-bit
input (20 bit X and 20 bit K) and producing 20-bit output (Y ). In each round
function, 20 intermediary bits Wi are first computed as Wi = Si(X, K), where
Si defines exclusive or (xor) of 20 input bits (out of 40). The Wi are shifted
with a bit-permutation P to obtain Y .

In Ceaser, the round functions are randomly sampled, fixed at design time,
and explicitly different in every stage. Let F [r] denote the round function for
stage r, and K [r] the 20-bit subkey for this stage. Describe the bit-permutation
with i← P (i), i.e., a bit at position P (i) moves to position i. Next, let Xi and Ki

denote the indices from resp. X and K [r] that are xored to obtain intermediary
bit Wi = Si(X, K). The round function output is Y = (Y0||Y1||...||Y19) =
(WP (0)||WP (1)||...||WP (19)). The round function F [r] thus comprises 20 functions
F

[r]
i (X, K [r]) each computing one Yi:

Yi = F
[r]
i (X, K [r]) =

∑

j∈XP (i)

Xj +
∑

k∈KP (i)

K
[r]
k (1)

180



Systematic Analysis of Randomization-based Protected Cache Architectures

Figure 9: Differential propagation through CEASER’s LLBC. For brevity, we
introduce f [j◦i](·) as shorthand for f [j](f [i](·)).

Observing the linearity in the entire cipher (particularly in the SBoxes Si,
supposed to be non-linear), we draw inspiration from differential cryptanalysis
to bypass RK altogether.

8.2 Constructing and Using the Shortcut

The outcome of the shortcut is a set of addresses ai that collides in the cache
with a target address a, i.e., RK(ai) = RK(a). The attacker could attempt
this shortcut by recovering the mapping key K, granting the shortcut for the
lifetime of the key. Our approach, in contrast, is fully key-independent. It
is a restricted take on chosen-plaintext attacks, where the restriction stems
from being embedded in a cache. Specifically, the adversary can choose a
set of plaintexts to RK (i.e., input addresses ai), but does not observe any
cryptographic output.

We rephrase the shortcut as a differential problem, i.e., to finding a set of ∆a
satisfying RK(a + ∆a) = RK(a). Matching with the Feistel topology, we denote
the input difference ∆a = (∆L||∆R) and the output difference (∆L′ ||∆R′).
Achieving the shortcut is then equivalent to finding pairs ∆L and ∆R, not both
zero, that result in the same set index bits: ⌊∆R′⌋b = 0b.

181



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

8.2.1 ∆−Propagation

We derive the propagation first through the round function F [r], then the full
LLBC. Let+denote GF (2) addition (bitwise xor). As a well-known cryptanalytic
fact, differences propagate unaffected through addition. Let ∆X and ∆Y denote
differences at the input and output of F [r]. Stated differently, if Y =F [r](X, K [r])
and Y ′ =F [r](X+∆X , K [r]), then ∆Y =Y ′+Y . Now compute the i-th output
bit ∆Y,i:

∆Y,i = Y ′
i + Yi = F

[r]
i (X + ∆X , K [r]) + F

[r]
i (X, K [r])

=
∑

j∈XP (i)

(Xj + ∆X,j + Xj) +
∑

k∈KP (i)

(K [r]
k + K

[r]
k )

=
∑

j∈XP (i)

∆X,j = f
[r]
i (∆X)

If we let ∆Y = f [r](∆X), then f [r] captures the effect of round function F [r]

on an input difference ∆X . Similar to F [r] before, f [r] is an umbrella for 20
functions:

∆Y = f [r](∆X) = (f [r]
0 (∆X) || f

[r]
1 (∆X) || ... || f

[r]
19 (∆X))

Note that f [r] only depends on the input difference ∆X . Crucially, it is inde-
pendent of both X itself and the key K.

8.2.2 Shortcut Equation

Armed with the ∆-propagation through round functions F [r], Figure 9 shows
our probability 1 differential trail through Ceaser’s full LLBC, yielding an
expression for output difference ∆′

R. This expression, which we dub the
Shortcut Equation, describes ∆a = (∆L||∆R) satisfying output collision:
⌊∆′

R⌋b =0b ⇒ RK(a)=RK(a+∆a).
A straightforward way to find solutions to this equation fixes (say) ∆L

and tests variable ∆R for equality. The expected offline complexity for each
∆a = (∆L, ∆R) is 2b−1 evaluations of the shortcut equation. Since very often
b < 20, the naïve computation is very practical. As the shortcut equation
describes twenty linear equations over GF (2), one could also algebraically
determine a compact expression for ∆L and ∆R.

182



Systematic Analysis of Randomization-based Protected Cache Architectures

8.2.3 Implications

The shortcut does not require knowledge of key K, and is even completely
independent of K. Furthermore, it is also independent of the input a. Although
in general RK(a) ̸=RK′(a), eviction sets constructed for key K ′ and input a′

are still eviction sets for any other (K, a) pair:

RK(a) = RK(a + ∆a)⇒ RK′(a′ + ∆a) = RK′(a′) (2)

This follows from the key-independence of the Shortcut Equation. Hence,
rekeying does not invalidate eviction sets constructed using the shortcut. This
has the devastating consequence that, as soon as the ∆a have been precomputed
offline, the attacker can construct arbitrary eviction sets for any target a with
zero cache accesses, completely bypassing RK .

8.2.4 Extension to Ceaser-S

Ceaser-S implements partitions with P parallel LLBC instances with different
keys. By Equation (2), collision in one partition implies collision in all partitions.
Thus, our shortcut equally impacts Ceaser-S, allowing easy construction of
fully congruent eviction sets.

8.2.5 Mitigation

At the very least, the LLBC rounds should incorporate non-linear SBox layers.
This spot mitigation thwarts the presented shortcut, but more subtle attacks
could remain.

Takeaway: Do not overestimate the mapping’s security.
Shortcut attacks can be fundamentally eliminated by a randomization map-
ping that resists formal cryptanalysis.

9 Discussion
In this section, we relate and compare the contributions in this paper to the
most closely related work, as well as provide specific recommendations and
directions for future work.

9.1 Prime+Prune+Probe on specific designs
Our generic model for computation-based randomized caches permits to in-
stantiate existing designs, extend their security analysis, and compare them in
terms of profiling effort.

183



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

Figure 10: Complexity (Aideal) to construct a fully congruent or generalized
(pe =90% or pe =50%) eviction set. Randomized caches are monolithic 8 MB
(nw =16, b=13, N =131 072 lines). Cost metric is total cache accesses; victim
runtime is modeled with 1 000 accesses. Fully congruent eviction assumes
initial set (before reduction) of 2N . PPP uses the best-performing strategy (cf.
Section 6.3), with k = N

2 (RAND) or k = 3N
4 (LRU).

We consider an 8 MB cache with 16 ways (nw) and 13 index bits (b) (i.e.,
N = 131 072). We assume a non-accessible target address (e.g., by enabling
security domain separation s). Although we consider Aideal (cf. Section 3.2),
i.e., we are able to pinpoint one target access of interest, victim execution time
cannot be neglected. Therefore, we assume a modestly-sized victim program,
performing 1 000 accesses per invocation.

Figure 10 shows total cache accesses to profile a generalized eviction set G
with pe = 90%. For each instance we use Prime+Prune+Probe and optimize
for total cache accesses.

9.1.1 Single-partition caches

Randomized caches with P =1 (Ceaser, Tsc) can be treated as traditional
caches without adversary control over physical addresses. They require extremely
frequent rekeying as fully congruent eviction sets can be obtained with the

184



Systematic Analysis of Randomization-based Protected Cache Architectures

efficient top-down approach [51, 40].

9.1.2 Ceaser-S

First-party Ceaser-S analysis [40] only considers fully congruent eviction. As
fully congruent addresses are extremely scarce, it is completely infeasible for
larger P .

We instantiate the model to Ceaser-S2 (resp. Ceaser-S4) by setting P =2
(resp. P =4) and replacement policy LRU. While Ceaser-S could accomodate
several policies (e.g., LRU, RRIP, . . . ) [40], we believe LRU leads to an accurate
security assessment. Indeed, many stateful replacement policies can be degraded
to LRU with some repeated accesses [11].

In what follows, we assume the problems from Section 8 to be fixed. There are
three proposed Ceaser-S instances, with rekeying periods resp. 100N , 200N
and 1000N . We observe that Prime+Prune+Probe consistently obtains
high-quality generalized eviction sets within the rekeying period of the 1000N -
instance. While prior profiling techniques succeed on average once every 68
years [40], PPP on Ceaser-S2 has average complexity of ≈ 320N , leaving
on average 68% of every rekeying period available for exploitation. The more
conservative designs (100N, 200N) resist PPP for the majority of rekeying
periods, though with considerably reduced security margin. We observe an
extreme gap between PPP and previous idealized estimates, easily exceeding
20 orders of magnitude for P = 4 and 50 orders of magnitude for P = 8 (not
displayed).

9.1.3 ScatterCache

First-party analysis [55] already considers generalized eviction. Their approach
can be seen as a corner case of PPP, i.e., using k =1 (cf. Section 5).

We instantiate ScatterCache by setting P = nw = 16, implicitly with
replacement RAND. Optimized for total accesses, PPP improves profiling with
three orders of magnitude for the considered configuration. The main contri-
bution of PPP is that it requires much fewer victim invocations, as it permits
to test many addresses in parallel (k ≫ 1). While ScatterCache does not
specify a rekeying frequency, our results indicate that it should be determined
more conservatively than expected.

9.1.4 Shortcuts

With a case study on Ceaser-S, we show with devastating consequences that
the security of the randomization should not be taken for granted, even if its
output is not directly observable. A similar study was conducted in concurrent
work [5]. Instantiating a sound cryptographic algorithm thwarts all shortcuts

185



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

but affects performance. Though not investigated, Tsc risks shortcuts due
to absence of cryptographic structure. Shortcuts in ScatterCache are only
possible by significant cryptanalytic advances for Qarma [1].

9.2 Future Work
Our work provides a baseline to compare future secure caches and their analysis.
Future work should investigate how our techniques can be applied to concurrent
work [46]. This paper also shows the importance of cryptanalytic resistance of
the core randomization mapping. Stringent latency constraints could inspire
new designs in the space of low-latency cryptography.

The rekeying period may be varied for different security levels. This can be
transparently implemented through frequently and unpredictably updating s
for high-security processes (e.g., enclaves), while refreshing K in larger intervals
for regular processes. We also propose heuristic-based rekeying, invalidating
eviction sets upon observation of certain microarchitectural events (e.g., many
LLC cache misses or PPP signatures). It should be noted that rapid rekeying
only mitigates attacks in scope for randomized caches, i.e., potential cache-
contention channels that do not target set contention might remain.

The gap between our conservative rekeying periods (Section 6.4.2) and PPP
profiling in practice is quite large. Future work could explore closing this gap
by improving profiling, relaxing theoretical bounds, or a combination of both.

10 Conclusion
Analyzing the residual attack surface of randomized cache architectures is a
complex undertaking. In this work, we have established a generic framework to
jointly analyze all existing computation-based randomized caches. We showed
that, similar to cryptanalysis, randomized cache designs must be subjected to
systematic analysis to gain confidence in their security. In this effort, we have
contributed on three main fronts.

First, we have advanced the profiling state of the art for randomization-based
secure caches. We developed novel attack techniques for such caches, including
Prime+Prune+Probe and optimizations like bootstrapping and multi-step
profiling.

Second, we have started bridging the gap between the usually assumed
ideal attack and complicating effects like noise and multiple victim accesses.
We have simulated an end-to-end attack, leaking AES keys from a vulnerable
implementation.

Finally, we have falsified the implicit assumption that any randomized
mapping successfully results in a secure cache.

186



Systematic Analysis of Randomization-based Protected Cache Architectures

Acknowledgments
We would like to thank the anonymous reviewers and our shepherd, David
Kohlbrenner, for their valuable feedback. This work was supported in part by
the European Research Council (ERC) under the EU Horizon 2020 research
and innovation programme (grant agreements No 681402 and No 695305). It
was also supported by the CyberSecurity Research Flanders VR20192203 and
the Research Council KU Leuven C16/15/058. Antoon Purnal is funded by an
FWO fellowship. Additional funding was provided by a generous gift from Intel.
Any opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of the
funding parties.

References
[1] R. Avanzi, “The QARMA block cipher family,” in IACR ToSC, 2017.

[2] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “ANVIL: Software-based protection against next-generation
Rowhammer attacks,” ACM SIGPLAN Notices, 2016.

[3] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[4] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: exploiting specu-
lative execution through port contention,” in CCS, 2019.

[5] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Rebeiro,
“Brutus: Refuting the security claims of the cache timing randomization
countermeasure proposed in CEASER,” in IEEE CA Letters, 2020.

[6] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” in USENIX Security Sympo-
sium, 2019.

[7] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches
to counteract power-analysis attacks,” in CRYPTO, 1999.

[8] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “HybCache: Hybrid
Side-Channel-Resilient Caches for Trusted Execution Environments,” in
USENIX Security Symposium, 2020.

[9] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth, “AutoLock: Why Cache Attacks on ARM Are Harder Than
You Think,” in USENIX Security Symposium, 2017.

187



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

[10] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR,” in CCS, 2016.

[11] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[12] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A Fast
and Stealthy Cache Attack,” in DIMVA, 2016.

[13] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-level Caches,” in USENIX Security
Symposium, 2015.

[14] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel Attacks
against Kernel Space ASLR,” in S&P, 2013.

[15] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache Attacks Enable Bulk Key Recovery on the Cloud,” in CHES, 2016.

[16] Intel Corporation, “Pin - A Dynamic Binary Instru-
mentation Tool,” https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

[17] Y. Jang, S. Lee, and T. Kim, “Breaking Kernel Address Space Layout
Randomization with Intel TSX,” in CCS, 2016.

[18] T. Kim, M. Peinado, and G. Mainar-Ruiz, “StealthMem: system-level pro-
tection against cache-based side channel attacks in the cloud,” in USENIX
Security Symposium, 2012.

[19] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative Execution
Processors,” MICRO, 2018.

[20] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
Attacks: Exploiting Speculative Execution,” in S&P, 2019.

[21] P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman, RSA,
DSS, and Other Systems,” in CRYPTO, 1996.

[22] J. Kong, O. Acıiçmez, J.-P. Seifert, and H. Zhou, “Hardware-software
integrated approaches to defend against software cache-based side channel
attacks,” in HPCA, 2009.

[23] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “ARMaged-
don: Cache Attacks on Mobile Devices,” in USENIX Security Symposium,
2016.

188



Systematic Analysis of Randomization-based Protected Cache Architectures

[24] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown:
Reading Kernel Memory from User Space,” in USENIX Security Symposium,
2018.

[25] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in HPCA, 2016.

[26] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in MICRO, 2014.

[27] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache architecture
thwarting cache side-channel attacks,” IEEE Micro, vol. 36, no. 5, pp. 8–16,
Sep. 2016.

[28] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks Are Practical,” in S&P, 2015.

[29] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francil-
lon, “Reverse Engineering Intel Complex Addressing Using Performance
Counters,” in RAID, 2015.

[30] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: Cross-Cores
Cache Covert Channel,” in DIMVA, 2015.

[31] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer, “Hello from the Other Side: SSH over Robust
Cache Covert Channels in the Cloud,” in NDSS, 2017.

[32] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” in CHES, 2017.

[33] J. Monaco, “SoK: Keylogging Side Channels,” in S&P, 2018.

[34] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and Their
Implications,” in CCS, 2015.

[35] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of aes,” in CT-RSA, 2006.

[36] D. Page, “Theoretical use of cache memory as a cryptanalytic side-channel,”
Cryptology ePrint Archive, Report 2002/169, 2002.

[37] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.

189



Antoon Purnal, Lukas Giner, Daniel Gruss and Ingrid Verbauwhede

[38] A. Purnal and I. Verbauwhede, “Advanced Profiling for Probabilistic
Prime+Probe Attacks and Covert Channels in ScatterCache,” in arXiv
1908.03383, 2019.

[39] M. K. Qureshi, “CEASER: Mitigating Conflict-based Cache Attacks via
Encrypted-address and Remapping,” in MICRO, 2018.

[40] ——, “New Attacks and Defense for Encrypted-address Cache,” in ISCA,
2019.

[41] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get
off of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds,” in CCS, 2009.

[42] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient fine-grain
cache partitioning,” in ISCA, 2011.

[43] S. Sari, O. Demir, and G. Kucuk, “FairSDP: Fair and secure dynamic
cache partitioning,” in International Conference on Computer Science and
Engineering (UBMK), 2019.

[44] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “MicroScope: Enabling Microarchitectural Replay Attacks,” in
ISCA, 2019.

[45] R. Spreitzer and T. Plos, “Cache-access pattern attack on disaligned aes
t-tables,” in COSADE, 2013.

[46] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “PhantomCache: Obfuscating Cache
Conflicts with Localized Randomization,” in NDSS, 2020.

[47] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache Side-channel
Attacks and Time-predictability in High-performance Critical Real-time
Systems,” in DAC, 2018.

[48] Y. Tsunoo, T. Saito, and T. Suzaki, “Cryptanalysis of DES implemented
on computers with cache,” in CHES, 2003.

[49] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-order
Execution,” in USENIX Security Symposium, 2018.

[50] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control,” in SysTEX, 2017.

[51] P. Vila, B. Köpf, and J. F. Morales, “Theory and Practice of Finding
Eviction Sets,” in S&P, 2019.

190



Systematic Analysis of Randomization-based Protected Cache Architectures

[52] R. Wang and L. Chen, “Futility scaling: High-associativity cache partition-
ing,” in MICRO, 2014.

[53] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-
based side channel attacks,” in ISCA, 2007.

[54] ——, “A novel cache architecture with enhanced performance and security,”
in MICRO, 2008.

[55] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Man-
gard, “SCATTERCACHE: Thwarting Cache Attacks via Cache Set Ran-
domization,” in USENIX Security Symposium, 2019.

[56] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack,” in USENIX Security Symposium,
2014.

[57] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” ACM Sigplan
Notices, vol. 50, no. 4, pp. 503–516, 2015.

[58] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in CCS, 2016.

191





Chapter 9

ShowTime: Amplifying
Arbitrary CPU Timing Side
Channels

Time is a river of passing events, and
strong is its current; no sooner is a thing
brought to sight than it is swept by and
another takes its place, and this too will be
swept away.

Marcus Aurelius

Publication data

Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid
Verbauwhede, "ShowTime: Amplifying Arbitrary CPU Timing Side
Channels". ACM SIGSAC Asia Conference on Computer and Communications
Security (AsiaCCS), 2023

Contributions

Principal author.

193



ShowTime: Amplifying Arbitrary CPU
Timing Side Channels

Antoon Purnal1, Marton Bognar2, Frank Piessens2 and Ingrid
Verbauwhede1

1imec-COSIC, KU Leuven 2imec-DistriNet, KU Leuven

Abstract.
Microarchitectural attacks typically rely on precise timing sources to
uncover short-lived secret-dependent activity in the processor. In response,
many browsers and even CPU vendors restrict access to fine-grained
timers. While some attacks are still possible, several state-of-the-art
microarchitectural attack vectors are actively hindered or even eliminated
by these restrictions.
This paper proposes ShowTime, a general framework to expose arbitrary
microarchitectural timing channels to coarse-grained timers. ShowTime
consists of Convert routines, transforming microarchitectural leakage
from one type to another, and Amplify routines, inflating the timing
difference of a single microarchitectural event to make it distinguishable
with crude sources of time.
We contribute several Convert and Amplify routines and show how to
combine them into powerful attack primitives. We demonstrate how a
single cache event can be amplified so that even the human eye can classify
it with 98% accuracy and how stateless time differences as minuscule as
20 ns can be captured, converted, and amplified in a single observation.
Additionally, we generate cache eviction sets, both in real-world restricted
browser environments and natively using timers with precisions ranging
from microseconds to seconds. Our findings imply that timer restrictions
alone, even when ruthlessly implemented beyond practical limits, provide
insufficient protection against CPU timing attacks.

1 Introduction
In modern computing systems, programs may affect the execution of other
programs through incidental interference in shared hardware components (e.g.,
caches or computational units). Such interference, predictably, affects the
performance of software on multi-tenant systems. However, sharing the processor

194



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

hardware (i.e., the processor microarchitecture) also carries security implications.
Indeed, by measuring how long it takes to execute specific actions (i.e., a timing
side channel), malicious programs can determine the usage patterns of specific
microarchitectural components. Therefore, any program with secret-dependent
resource utilization unintentionally encodes its secrets in the microarchitecture,
exposing it to co-located adversaries. Several attacks manage to exploit this
behavior, revealing cryptographic keys [1, 2, 3, 4], operating system secrets [5,
6, 7, 8], or user input [9, 10, 11].

Microarchitectural leakage is often categorized into stateful channels, whose
effect on the microarchitecture endures for some time after the secret-dependent
execution, and stateless channels, for which the influence on the microarchitec-
ture disappears as the secret-dependent instructions finish executing. Initially,
stateful attacks (e.g., [1, 4, 12, 13, 14]) attracted more attention as they allow
the side-channel measurement to happen sometime after the secret-dependent
activity. Recently, however, stateless side-channel attacks were also proven to
be powerful [15, 16, 17, 18, 19, 20, 21].

Microarchitectural leakage by itself, whether it be stateful or stateless,
produces only minuscule timing differences (e.g., 10-100 ns). Therefore, the
lion’s share of timing side-channel attacks rely on high-precision sources of time,
either by consulting existing timer interfaces (e.g., [4, 12, 10, 22, 14, 23]) or
by producing fine-grained and monotonically increasing values that correlate
with time (e.g., [24, 25, 8]). In response, some platforms disable unprivileged
access to high-precision timers [26]. Even stronger, there have been academic
proposals [27, 28, 29] to orchestrate computing environments that eliminate
all high-precision timing sources. Similar measures are currently deployed in
modern browsers [30, 31, 32, 33, 34].

Without fine-grained timers, one option is to repeatedly trigger the leak
(multi-shot amplification) [35, 36, 37, 38]. However, this requires a deterministic
repetition of the leak, which is not generally possible. Moreover, timing dif-
ferences typically accumulate slowly. In contrast, the website leaky.page [39]
performs a sequence of memory accesses that, conditioned on the presence of
a single target memory access (single-shot amplification), accrue measurable
timing differences (e.g., 100 µs). While powerful, this technique can only expose
the presence of same-process memory accesses.

At this time, it is unclear whether several state-of-the-art microarchitectural
attacks, e.g., those that obtain privilege escalation [40, 41, 42] or extract secrets
across processor cores [4, 12, 10], still pose a threat without high-precision timers.
A key unsolved problem is finding eviction sets, i.e., sets of memory addresses
contending for capacity in the last-level cache (LLC) [12, 43, 44, 45, 46]. More-
over, stateless channels appear challenging to amplify, as they are inherently
short-lived. Therefore, we ask:

195



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

Can cross-core side-channel attacks be mounted with low-precision timers? Can
stateless side channels be amplified at all? What are the limits to single-shot
microarchitectural amplification?
In this paper, we show that microarchitectural attacks are not foundation-
ally thwarted by restricted timing sources. We present ShowTime, a generic
framework to produce considerable timing differences from fine-grained leaks,
regardless of their source.
ShowTime composes two phases of independent interest. First, the Convert
phase transforms an initial microarchitectural leak to make it amenable to enter
the second phase, Amplify, which produces a large timing difference depending
on its input state.

For the Amplify phase of ShowTime, we develop novel instruction sequences
that exhibit considerable differences in runtime, depending on a single microar-
chitectural state difference. First, we generalize the leaky.page amplifier [39]
for use in ShowTime, permitting the single-shot amplification of additional
events, such as differences in load order or cache line invalidations. We show
how to increase its amplification ratio, i.e., the ratio between slow and fast
executions of the amplifier, from 1.3 to 2.3. Additionally, we develop robustness
measures to increase the maximal time difference it can reliably produce, from
500 µs to 5 ms. Second, we discover a powerful single-shot amplifier for adver-
saries with native code execution. Its amplification ratio exceeds 10, meaning
that it takes, e.g., less than 1.1 ms to produce a difference of 1 ms. Due to its
unprecedented robustness, it can produce timing differences far beyond any
timer coarseness imposable in practice.

For the Convert phase of ShowTime, we contribute several conversion
techniques, relying on well-known CPU behavior like out-of-order execution,
cache line back-invalidation, and thread-level parallelism. They make it possible
to convert (single-shot, potentially cross-core, potentially stateless) microarchi-
tectural leaks to make them attacker-visible, attacker-amplifiable, and both.

To show how ShowTime fares with stateless leaks, we develop a proof-of-
concept attack to expose port contention on another processor core through
its delaying effect on following instructions. Though this secret-dependent
delay does not exceed 20 ns, ShowTime can capture, convert and amplify its
presence or absence. We also demonstrate that ShowTime can be used to
reveal information on the CPU frequency at a given point in time, which is an
inherently stateless microarchitectural context that has recently been shown to
produce severe leakage [47, 48].

Exploring the limits of microarchitectural amplification, we find that our
strongest amplifier can generate time differences so enormous that the human
eye can classify a single initial cache hit or miss with more than 98% accuracy. In
addition, we find eviction sets for the LLC using the Unix Epoch, an excessively
crude "timer" reflecting the number of seconds elapsed since January 1, 1970.

196



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

We also construct LLC eviction sets in JavaScript with a 100 µs timer,
which is the most restricted scenario in the latest Chrome release. The median
execution time is 25 s, for an accuracy of 70%. These results show that the
ShowTime convert-and-amplify strategy is also successful from the browser,
which is a restricted execution context where timers are already limited in
practice.
Contributions. Our main contributions are the following:

- We provide a framework to expose fine-grained timing leaks of arbitrary
type to coarse-grained timing sources.

- We develop robust amplifiers capable of producing large time differences
from unique microarchitectural events.

- We show how to reliably convert activity in one microarchitectural com-
ponent into controlled activity in another.

- We evaluate ShowTime for cross-core stateless attacks, frequency mea-
surements, and eviction set construction.

We disclosed our findings to Intel and Google.
Availability. To facilitate the reproduction of our research, artifacts are
available at

https://github.com/KULeuven-COSIC/ShowTime

2 Background
Cache Hierarchy. Modern processors consume and produce data faster
than main memory technology can provide and accept it. To overcome this
issue, processors feature a cache hierarchy; a series of successively smaller and
faster pieces of on-chip memory. Typically, caches are implemented as a two-
dimensional array of cache lines. This array is indexed into sets, to which cache
lines are mapped based on their memory address. Lines mapped to the same
set are called congruent, and the number of congruent lines mapped to the same
set is the cache’s associativity (or its number of ways).

The cache hierarchy on Intel processors comprises three levels. Each core
has its own L1 and L2 cache, the two fastest and smallest levels. The L3 or
last-level cache (LLC) is shared between all CPU cores. Most Intel LLCs abide
by an inclusive policy, stating that all cache lines in L1/L2 necessarily have a
copy in the LLC.

In the event of a cache miss, i.e., the cache does not contain the requested
memory address, the next level cache is consulted, cascading all the way to
main memory in case the request triggers a cache miss in all levels. To install
the new line in the cache set, one of its existing entries is selected to be replaced

197



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

(or evicted), and the state machine that governs this selection is the replacement
policy.

Sometimes, the programmer or compiler may want to instruct the processor
to fetch specific data before it is used. On Intel processors, several so-called
prefetch instructions exist for this purpose.
Cache Attacks. The presence of a shared cache hierarchy implies that
processes affect each other’s runtime through competitive use of the cache
space. This introduces a timing side channel. For instance, a malicious process
occupying an entire cache set can determine, by measuring the access latency
of its own cache lines, whether one of them was evicted by the activity of
another process. Such an attack is known as Prime+Probe [1, 12]. Recently,
a more precise version, Prime+Scope [46], was proposed, which concentrates
the contention with the victim into a single cache line. A key prerequisite for
Prime+Probe-style techniques is to find eviction sets, i.e., addresses that map
to the same set in the target cache.
Other Microarchitectural Leakage. While the cache hierarchy has been
the most prominent target for timing attacks, CPU microarchitectures feature
several other components that expose processes to the metadata leakage of other
processes. Any component competitively shared between potential attacker and
victim processes can be the target of a timing attack. Some of these components
are core-private, e.g., L1 caches [1], execution ports [16, 17], TLBs [14], and
fetch/decode units [49], implying that an attacker needs to obtain core-level co-
location with their victim to mount an attack. Other components, e.g., DRAM
row buffers [50], and on-chip interconnects [18, 19, 20], are competitively shared
across cores, relaxing the co-location requirements for the attacker.
Out-of-Order Execution. To maximally make use of available hardware
resources, modern processors implement out-of-order execution. This feature ex-
ploits instruction-level parallelism, allowing independent instructions to execute
as soon as their operands are available, instead of strictly adhering to the order
specified by the program’s (inherently serial) software description. Out-of-order
execution itself may be a source of hardware vulnerabilities [51].

3 ShowTime
3.1 Threat Model
We consider an attacker with unprivileged code execution. The only timing
sources available to the attacker are coarse-grained timers, i.e., their granularity
(e.g., 5 µs, 100 µs, or 100 ms) is several orders of magnitude larger than the
timing variations the attacker intends to measure (e.g., 10 ns). We explicitly do
not assume that the attacker runs on the same CPU core as the victim, that
huge memory pages are available, or that the CPU frequency is fixed.

198



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

Initial exposure Convert Amplify

S ➝ μ1 μ2: V ➝ μ3: Mμ1 ➝ μ2: V μ3: M ➝ S'

Measure

Figure 1: ShowTime framework.

3.2 General Framework
Figure 1 shows the ShowTime cascade for a general microarchitectural side-
channel attack. The data flow starts from the initial exposure of secret architec-
tural data (S) to the microarchitectural context (µ1). At the end, the attacker
reconstructs the secret data by measuring a transformed context. For this
reconstruction to be possible, the final context needs to have two properties:

• Visible (V): the leakage is present in a component shared with the adversary
or observable through an explicit interface [52].

• Measurable (M): the leakage is strong enough to be picked up by the mea-
surement source. Being measurable implies being visible.

ShowTime aims to achieve measurability for arbitrary initial exposure types
with Convert and Amplify phases, which we now describe briefly. In practice,
some steps may be repeated, skipped, or reordered.

3.2.1 Initial Exposure

The initial encoding of secret data into the microarchitecture can be categorized
according to different criteria:

• Visible (V) or invisible: the latter may be the case for leaks in core-private
resources such as execution ports [16, 17].

• Unintentional (in a side-channel attack), or intentional (in a covert channel
or a transient execution attack [51, 53]).

• Stateful or stateless, i.e., with persisting (stateful) or ephemeral (stateless)
interference in the microarchitectural context.

3.2.2 Convert

The Convert step translates exposure in one microarchitectural component
into exposure in another. This can be required for multiple reasons. If the
initial exposure is not visible (V), it can be transformed to a visible encoding in
the microarchitectural context. If the initial leakage is not measurable (M) and
cannot be directly amplified (e.g., it is stateless), it can first be transformed
into an amplifiable (e.g., more persistent [54, 55]) state.

Similar to the initial exposure, conversions can be unintentional or inten-
tional. Unintentional conversions can occur through gadgets in the victim

199



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

code or implicitly through processor hardware features (e.g., dynamic volt-
age and frequency scaling (DVFS) converts power differences into frequency
differences [47]).

3.2.3 Amplify

Leakage that is visible (V) but not measurable (M) requires amplification
before it can be decoded. An amplifier is a piece of code whose execution time
is deliberately made sensitive to a specific difference in the microarchitectural
context.

Prior work mostly focuses on constructing multi-shot amplifiers, which re-
peatedly trigger an identical initial exposure [35, 36, 37, 38]. However, attackers
cannot always force the victim to repeatedly execute with the same inputs.
Moreover, while existing amplification techniques are theoretically capable of
achieving arbitrary time differences, it is unclear whether they remain applicable
in practice as timing sources get restricted even further, e.g., to 100 ms [56].

In this work, we focus on single-shot amplification. From here on, amplifier
and amplification refer to single-shot methods.

3.2.4 Measure

The final step in ShowTime is to read out the side-channel information in
the architectural domain to reconstruct (S’) the secret (S). For timing side
channels, the architectural value is typically obtained by reading a monotonically
increasing value before and after executing the target code. This value can either
be readily accessible (e.g., rdtsc in x86 or performance.now() in JavaScript),
or implemented by the attacker [24, 25, 57, 58]. The difference can then be
thresholded to recover the initial secret.

Alternatively, the thresholding can also be a part of the measurement, e.g., by
testing whether the target executes slower or faster compared to an action with
a known execution time [59]. Other software-accessible measurement interfaces
include hardware transactional memory [52, 60], on-chip power consumption
monitors [61], and the CPU frequency [47] manager. However, such direct
interfaces can be or have been disabled [62] or weakened [61]. In this work, we
focus on timing side channels.
Restrictions in Browsers. In response to Spectre [53], browsers limit
JavaScript features that can be correlated to the precise passage of time,
especially in combination with interacting with other websites [31]. Websites
can opt into these features by explicitly setting two HTTP response headers,
enabling cross-origin isolation.

In current versions of Chrome (≥ 92) [31] and Firefox (≥ 79) [63], SharedArrayBuffer
is one of these restricted features, as it can be used for constructing a precise
timer [24]. In Chrome, the granularity of performance.now() is limited to 5 µs

200



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

on isolated and 100 µs on non-isolated sites [30, 31, 32]. In Firefox [34] and
Safari (WebKit) [33] performance.now() is further degraded to a precision of
1 ms. Even before Spectre, the Tor Browser limited its precision to 100 ms [56].

A B E F HGC D

Access X

X B E F HGC D X B A F HGC D

Access A

(1) (2) (3)

Figure 2: Amplifier based on the L1 replacement policy state.

4 Single-Shot Amplification
This paper studies single-shot amplifiers, i.e., unprivileged programs whose
execution time depends on a single difference in a microarchitectural context.
Not relying on multiple victim code invocations makes these amplifiers applicable
in more attack scenarios.
Amplifier Quality. The capabilities of a single-shot amplifier can be quantified
by different metrics. Its amplification ratio (A ≥ 1) defines the ratio between
the amplifier’s slow and fast execution times. The maximal output timing
difference ∆ is the absolute difference between the slow and fast times the
amplifier can reliably produce. As we will see, although some amplifiers are
theoretically capable of producing arbitrary timing differences, in practice they
seem to degrade when a specific timing difference is reached. Finally, the initial
microarchitectural contexts the amplifier can capture determines how widely
applicable the amplifier is.

4.1 Amplification Using the L1 PLRU
PLRU Replacement Policy. Modern Intel processors have an 8-way set-
associative L1 data cache, which implements an approximation of the least-
recently-used (LRU) replacement policy, dubbed PLRU (for pseudo-LRU).
Conceptually, cache lines are organized as the leaves of a balanced binary tree
structure (cf. Figure 2). The state of each node of the tree is carried by one state
bit, which can be thought of as an arrow, pointing to one of its two children.

On a cache hit, i.e., when the requested line can be served directly from
the L1d cache, the arrows at each node along the path from the root to the
cache line are set to point away from this line. On a cache miss, the requested
line is loaded into the cache. The line to be replaced (or evicted) is selected
by following the direction of the arrows from the root of the tree to one of the
leaves. Then, similarly to a cache hit, the direction of all traversed arrows is set

201



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

to point away from the newly inserted line. The line that is currently cached,
but is next to be evicted, is said to be the eviction candidate.
Basic PLRU Amplification. leaky.page [39] proposes a single-shot ampli-
fication technique that captures an L1 Eviction event, e.g., the secret-dependent
eviction of an attacker line A by a line X that maps to the same L1 set. In
particular, their PLRU amplifier repeatedly traverses a sequence of memory
loads mapping to specific cache lines (which, to prevent the secret-dependent
state from being destroyed, does not include the line X itself). This traversal ex-
hibits a different ratio of L1 hits and misses conditioned on the secret-dependent
eviction of A (the L1 Eviction event). Given that L1 cache misses take longer to
resolve than L1 cache hits, the different hit/miss pattern gives rise to fast and
slow instances. By repeating the traversal until the time difference between the
fast and the slow pattern is larger than the timer granularity ∆, the occurrence
of the L1 Eviction event can be revealed with a low-resolution timer.

Concretely, consider cache lines A-H, which all map to the same L1d set.
Accessing the preparation pattern load(AECGBFDH) (i.e., a load to A, then to
E, etc.) produces the initial state of the PLRU tree as in Figure 2, or one that
is equivalent to it, up to permuting the two children of each node. Note that
this is only guaranteed as long as none of the lines A-H are cached prior to the
pattern, which is a prerequisite that can be fulfilled by evicting the relevant L1
set. To ensure that the processor does not reorder the loads of line A-H, they
are serialized through a data dependency [39].

To describe the traversal pattern, we adopt a compact notation. The
format is traverse(*)Bn , where * is one iteration of the base pattern, and Bn

implies line B is accessed once every n accesses of the base pattern. Therefore,
traverse(AECGFDH)B4 is short for the repeated traversal of
load(AECBGFDBHAEBCGFBDHABECGBFDHB..).

Due to the PLRU replacement policy in the L1d cache, all accesses are L1
hits if the L1 Eviction event did not occur, and only 25% of them are hits if it
did occur. Figure 2 explains why. In case the L1 Eviction did not occur, the
cache remains in state (1). Naturally, as every element of the traversal pattern
is still in L1, all accesses will be hits. If the event did occur, A was evicted from
the cache and replaced by X (2). At the same time, E became the next eviction
candidate. In the first step of the traversal, we access A, which, since it was
evicted, results in a cache miss. Since E is the new eviction candidate, E will be
replaced by A, and C becomes the eviction candidate (3). In the next step, we
access E, but since it was just evicted, it will result in another miss, etc. The
repeated access to B serves to prevent X from being evicted, without accessing
X itself.
Improving the Amplification Ratio. To enhance the power of the PLRU
amplifier, we propose to perform the traversal with addresses that are congruent
in L2. This automatically implies congruence in L1 as well. The traversal

202



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

Table 1: Traversal and refresh patterns (novel in bold), along with the sequence
of hits (H) and misses (M) they generate. Accesses corresponding to line B are
underlined.

Traversal Hit/Miss (1) Hit/Miss (2) Type

traverse(AECGFDH)B4 HHHHHHHH.. MMMHMMMH.. Distance 1
traverse(AECGFDH)B3 HHHHHH.. MMHMMH.. Distance 2
traverse(AECGFDH)B2 HHHH.. MHMH.. Distance 3

Refresh Type

load(012B345BECGBFDHB) Distance 1
load(01B23B4B5BECBGDBFBHB) Distance 2
load(0B1B2B3BEBGBFBHB) Distance 3

patterns remain the same. However, the penalty for the slow pattern becomes
larger, as some of the cache misses need to be served from the LLC instead of
L2. We also considered traversing LLC-congruent lines but did not observe an
additional penalty compared to L2-congruent lines.
Increasing Robustness. Consider when a competing L1d access to the same
set occurs, e.g., by another process running on the same physical core. If, at
any point, line X or B is evicted, the amplifier no longer works. The original
traverse(AECGFDH)B4 sequence is not very robust against this; if another access
to the L1 set occurs before any of the accesses to B, X is evicted (i.e., once
every four accesses, X is the first in line to be evicted in case of a cache miss).
Therefore, Table 1 contains more robust sequences where X is at worst two
(distance-2) or three (distance-3) cache misses away from being evicted. This
is obtained by accessing B more frequently and comes at the cost of (slightly)
decreasing the amplification ratio.

As an optional robustness measure against degradation of the L1 state due
to noise, we also propose to refresh it periodically. That is, we periodically
evict the L1 set with additional lines 0-5 that map to the same set, without
affecting the presence or absence of lines X and B. This can occur with the
refresh patterns in Table 1. Note that refreshes should only be repeated once
every so many traversals, e.g., 128, and hence are negligible for the execution
time.
Expanding Measurable Events. We now discuss how the PLRU single-shot
amplifier can be generalized to be conditioned on other initial microarchi-
tectural contexts relating to the L1 data cache, i.e., L1 Reordering and L1
Back-Invalidation (cf. Table 2).

L1 Reordering is captured in the following manner. The L1 PLRU state is
prepared as before (i.e., load(AECGBFDH)). Recall that line A is the eviction
candidate after the preparation. We aim to capture the load order of lines D

203



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

Table 2: Amplifying other events in the L1d cache. The adaptor modifies the
state difference to match the one in Figure 2, such that identical traversal
patterns can be used.

Amplify Initialize Event (option 1/2) Adaptor

L1 Eviction load(AECGBFDH) load(X) / ⊣ ⊣

L1 Reordering load(AECGBFDH) load(DH) / load(HD) load(XFHB)
L1 Back-Invalidation load(AECGBFDH) invalidate(E) / ⊣

load(XFHB)

and H. If D is accessed before H, A remains the eviction candidate. If, instead,
H is accessed before D, E becomes the eviction candidate. Now consider another
access to line X, serialized to happen after both loads. It evicts either line A
or E, depending on the load order of D and H. Then, after accessing a short
adaptor sequence (Table 2), traversing the original L1 Eviction pattern exhibits
the same hit/miss pattern as the L1 Eviction event.

L1 Back-Invalidation is captured as follows. The state is prepared as before
(i.e., load(AECGBFDH)). Line A is the eviction candidate. Consider the event
where line E is evicted from the LLC. To satisfy the LLC inclusion property,
this triggers a back-invalidation of line E in L1. Now consider another access,
to line X, happening after this potential back-invalidation. If the invalidation
has occurred, X takes the place of E, since the L1 replacement policy favors
filling empty ways. If it did not occur ( ⊣ ), X evicts A. Again, a short adaptor
sequence makes it behave like the original L1 Eviction pattern.

Amplify: L1 PLRU.
PLRU can capture reorderings and invalidations. L2-congruent lines increase
the amplification ratio, and distance-2/3 sequences boost robustness.

4.2 Amplification Using prefetchNTA
Non-Temporal Prefetch on Intel x86. prefetchNTA is a software prefetch
instruction with a non-temporal hint, communicating to the processor that
this data will not be used multiple times. Its microarchitectural behavior
on Intel CPUs was previously studied by Guo et al. [64]. Importantly, lines
cached using this instruction are treated differently by the LLC replacement
policy. For details on this replacement policy, we refer the reader to prior
work [65, 66, 67, 64].

For our purposes, three generic properties are relevant. First, for lines that
are not cached, prefetchNTA performs a cache line fill in the LLC, but with
the highest age, making it very likely to become the eviction candidate. Second,
prefetching lines that are already cached in the LLC does not affect their LLC

204



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

1 .rept 1000 ; repeat at will
2 mfence
3 prefetchnta (A)
4 mfence
5 prefetchnta (B)
6 .endr

Listing 1: Prefetch-based amplifier.

. . . .

miss!

. . . .A . . . .B . . . .A.

miss! miss!

. A . .

hit!

. A . . . A . .B.

miss!

. . A . .B

hit!

Figure 3: Working principle of the prefetch amplifier (LLC).

replacement policy state. Third, prefetchNTA takes a (much) longer time to
execute for lines in memory than for those in the cache.
Technique. Figure 3 shows the working principle of the prefetch-based
amplifier. The initial microarchitectural context that conditions the amplifier is
the LLC caching state of an attacker line A. Assume that the attacker also has
access to a line B, which is not cached but maps to the same LLC set as A. The
amplifier is a repeated alternating prefetchNTA of lines A and B, serialized
with mfence instructions to maintain their execution order (Listing 1).

Consider the case where line A is not cached, shown on the top half of
Figure 3. The prefetchNTA of line A caches it in the LLC as the eviction
candidate (indicated by the empty arrow). The prefetchNTA of line B evicts
A, and installs B as the new eviction candidate. As the pattern is repeated,
every prefetch is served from memory, slowing down the execution.

Now, consider the case where line A is cached (but is not the eviction
candidate). The first prefetchNTA of A is fast and does not affect its replacement
state. Although the first prefetchNTA of B is slow, it caches B in the LLC as the
eviction candidate and, importantly, does not evict A. All future prefetchNTAs
of A and B are fast, as both lines remain cached without evicting each other.
Robustness. The fast and slow instances of the prefetch amplifier share the
invariant that there is always a prefetched attacker-chosen line in the cache.
Therefore, if there are spurious cache line fills (i.e., noise) in the LLC set, it is
likely that a prefetched line is evicted. In neither of the fast or slow instances
does this destroy the state difference needed to keep the amplifier functional.
In the fast case, the spurious access will evict B from the LLC, which will make
it be loaded from memory once, after which the pattern can continue, as A is

205



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

102 103 104 105 106

105

107

109

Repetitions

C
yc

le
s

tF tS,L1,NR tS,L2,NR tS,L1,R tS,L2,R

0

1 · 10−3

2 · 10−3

T
im

e
D

iff
er

en
ce

∆
[s]∆tL1,NR ∆tL2,NR ∆tL1,R ∆tL2,R

(a) Distance-1 PLRU amplifiers

102 103 104 105 106

105

107

109

Repetitions

C
yc

le
s

tF tS,L1,NR tS,L2,NR tS,L1,R tS,L2,R

0
5 · 10−4
1 · 10−3
1.5 · 10−3
2 · 10−3

T
im

e
D

iff
er

en
ce

∆
[s]∆tL1,NR ∆tL2,NR ∆tL1,R ∆tL2,R

(b) Distance-2 PLRU amplifiers

102 103 104 105 106
104

106

108

Repetitions

C
yc

le
s

tF tS,L1,NR tS,L2,NR tS,L1,R tS,L2,R

0

2 · 10−3

4 · 10−3

T
im

e
D

iff
er

en
ce

∆
[s]∆tL1,NR ∆tL2,NR ∆tL1,R ∆tL2,R

(c) Distance-3 PLRU amplifiers

Figure 4: Performance of L1 PLRU amplifiers. The subscripts in the legend
denote whether L1- or L2-congruent addresses are used and whether there is a
refresh (R) or not (NR). On some subfigures, ts,L∗,NR and ts,L∗,R may overlap.

206



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

still cached normally. In the slow case, the spurious access will evict either A
or B from the LLC but, regardless of which one, the next prefetch would have
been slow anyway.

Amplify: Non-Temporal Prefetch.
Quick LLC eviction enables robust single-shot amplification.

4.3 Evaluation
PLRU Amplifiers. Figure 4 depicts the fast (tF ) and slow (tS) traversal
times of the L1 amplification patterns as a function of the number of repetitions,
along with the time difference they produce. We do not evaluate the L1
Eviction, L1 Reordering, and L1 Back-Invalidation amplifiers separately, since
they have identical performance. For each data point, we consider 100 runs of
100 iterations and take the median over all runs. When refresh patterns are
enabled, they are accessed once every 1024 traversals (with distance 2). The
amplification ratio is constant for small ∆, but as ∆ increases, noise accumulates
and the amplification ratio degrades until supposedly fast and slow traversals
are no longer distinguishable. However, amplifiers vary in their resilience to
degradation.

103 104 105 106 107 108

105

107

109

Repetitions

C
yc

le
s

tF tS

0
0.1
0.2
0.3

T
im

e
D

iff
er

en
ce

∆
[s]∆t

Figure 5: Performance of the prefetch-based amplifier (median of 10 batches of
100 runs per data point).

Prefetch Amplifier. Figure 5 shows the median traversal times using
the prefetch amplification method on the Intel Core i7-7700K. The initial
amplification ratio exceeds one order of magnitude, which it maintains until
roughly 1 billion cycles, after which it declines. Due to its robustness, the
amplifier is able to produce time differences of several hundreds of ms from a
single initial difference.
Comparison. Table 3 collects the best amplifier instances of each type, along
with their amplification ratio A and maximal output difference ∆. It confirms
that traversing L2-congruent lines, instead of L1-congruent lines, produces

207



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

Table 3: Comparison of single-shot amplifiers.

Source Amplifier Single-Shot A Max. ∆

leaky.page [39] L1 PLRU (L1-congr., dist-1) ✓ 1.3 ≈ 500 µs

This Work L1 PLRU (L2-congr., dist-1) ✓ 2.3 2.4 ms
This Work L1 PLRU (L2-congr., dist-2) ✓ 2.0 1.8 ms
This Work L1 PLRU (L2-congr., dist-3) ✓ 1.6 5.1 ms
This Work prefetchNTA ✓ 10.1 350 ms

a larger time difference. For the L1-congruent distance-1 amplifier [39], our
best implementation achieves a maximal output difference of 500 µs. For the
distance-3 sequences, we observe output differences up to 1.5 ms for L1-congruent
addresses, and 5 ms for L2-congruent addresses.

In Figure 4, periodic refreshes appear to increase the robustness of the L1
sequences, but no such effect is visible for the L2 sequences.

Measurement Rate. The rate at which timing measurements can be per-
formed for a timing source of granularity ∆ is determined by the amplification
ratio A of the amplifier. With A defined as the ratio tS

tF
, and tF − tS = ∆,

this implies that tF = ∆
A−1 and tS = A·∆

A−1 . As an example, to produce a
timing difference of ∆ = 100 µs, a slow measurement for the leaky.page PLRU
amplifier (A = 1.3) takes ≈ 4.3∆ = 430 µs. It takes ≈ 1.8∆ = 180 µs for our
best PLRU amplifier, and ≈ 1.1∆ = 110 µs for our prefetch-based amplifier.
Note that these estimates are only valid for the regimes in which A is constant
(and hence independent of ∆). If amplifiers are used beyond their robustness ca-
pabilities, they may not even produce any meaningful timing difference anymore
(cf. Figure 4).

Practical Considerations. The prefetch-based amplifier relies on the x86
prefetchNTA instruction and on Intel’s implementation choice of marking
prefetched lines for quick eviction from the inclusive LLC [64]. A similar
amplifier may be devised to exploit the LLC replacement policy (cf. [66, 54, 68])
without a prefetch instruction, at the cost of a lower amplification ratio. The
L1-based amplifiers do not require the exposure of specific instructions and can
hence be used in restricted environments (cf. [39] and Section 6.3).

The prerequisites for our single-shot amplifiers are met for a wide range of
Intel processors [39, 64]. However, other CPU families are not guaranteed to
satisfy them. Still, the existence of single-shot amplification demonstrates that
innocuous implementation decisions invalidate high-level security properties
that are, at the surface, completely unrelated. We leave an exploration of
single-shot amplifiers in other processor families to future work.

208



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

5 Converting CPU Side Channels
In this section, our objective is to convert side channels of interest to state
differences that are amenable to single-shot amplification.

5.1 Back-Invalidation

. . . S . . . . . . LLC

. . . . . . .L1A L1V

. . . T . . . . . . LLC

. . . . . .L1A L1VS T

Figure 6: Conversion based on CPU back-invalidation logic. If a line (S) gets
evicted from the LLC (by T), all copies of S in the core-private caches get
invalidated.

The first technique uses back-invalidation, a deterministic microarchitectural
behavior on processors with inclusive LLCs. When a cache line is evicted from
the LLC, it is automatically invalidated in the L1 and L2 caches to preserve the
inclusiveness invariant. Therefore, the CPU back-invalidation logic produces an
implicit conversion from the LLC caching status to an L1 Back-Invalidation
event, which is amenable to single-shot amplification (cf. Section 4).

With this technique, memory accesses to addresses that map to the monitored
LLC set produce the invalidation of a fixed and predictable line in L1. Note
that this conversion immediately implies the single-shot amplification of the
cross-core Prime+Scope [46] cache attack, which infers LLC activity through
the invalidation of a specific line (i.e., the scope line) from the L1 cache.

Convert: CPU Back-Invalidation.
LLC evictions automatically produce L1 Back-Invalidation events.

5.2 Time to Order
The second conversion technique, Time to Order, exploits the out-of-order
execution of instructions on modern processors. Instructions that do not have
data hazards, i.e., data dependencies on architecturally older instructions, may
be executed ahead of these older instructions. Therefore, in an out-of-order
processor, the execution order of instructions depends on the time it takes for
their dependencies to resolve. As a result, well-designed instruction sequences
can encode the latency of specific instruction paths into the execution order of
instructions that depend on these paths.

209



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

1 dep = prepare - uarch ()
2

3 // first leg // second leg
4 dep1 = secret - delay (dep) dep2 = fixed - delay (dep)
5 dep1 = instr -1( dep1) dep2 = instr -2( dep2)
6

7 race -end(dep1 , dep2)

Listing 2: Time to Order conversion.

Concretely, as in Listing 2, consider an execution race between two inde-
pendent legs, which are orchestrated to start at the same time, i.e., through
a shared data dependency on another instruction (or the preparation step
prepare-uarch). One of the legs has a secret-dependent latency, i.e., it con-
tains an operation for which we want to expose the execution time. The other
leg has a fixed latency, implemented as an instruction sequence with a fixed
execution time (e.g., a sequence of data-dependent multiplications). The length
of the fixed-delay sequence is chosen such that the relative execution order of
the final instructions of the two legs (resp. instr-1 and instr-2) depends
on the latency of the secret-dependent operation. If, in a later stage, the
execution order of instr-1 and instr-2 can be exposed, it reveals whether
the secret-dependent latency is above or below the threshold determined by the
fixed-delay leg.

In short, Time to Order turns a timing difference into a difference in the
execution order through a microarchitectural race condition. In principle, the
timing difference at the input (i.e., the event that determines the length of the
variable-time leg) can be of arbitrary type. We now show how an instruction
ordering at the output is amenable to single-shot amplification. Depending on
the preparation and the choice of instr-1 and instr-2, time differences can
be cascaded to L1 (cf. Section 4.1) or the LLC (cf. Section 4.2).

5.2.1 Conversion to L1 Caching Status.

Table 4 shows how Time to Order can convert a time difference into an L1
Reordering event. The microarchitectural state is prepared by filling the PLRU
tree as in Section 4.1, and the instructions at the end of each leg are simply the
loads as described for the L1 Reordering amplifier.

There is no explicit restriction on the type of secret-delay that can be
converted with Time to Order. Therefore, it is more generally applicable than
the back-invalidation conversion (Section 5.1), which has the benefit of being
deterministic. A relevant event to capture and convert into the L1 PLRU state
is the presence of an LLC hit or miss. Indeed, properly wielding this conversion
(see Section 6) reinstates the capability of constructing LLC eviction sets in the
browser [10, 43] using the L1 PLRU amplifier, as well as cross-core [12, 10, 46]

210



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

Table 4: Time to Order for our single-shot amplifiers.

Amplifier prepare-uarch secret-delay instr-1 instr-2

L1 Reordering load(AECGBFDH) any load(D) load(H)
Prefetch evict(A) any load(A) prefetchNTA(A)

and cross-process microarchitectural attacks.

Convert: Time to Order (L1).
Encodes a time difference into the L1 PLRU replacement policy.

5.2.2 Conversion to LLC Caching Status.

As a conversion to LLC caching status, Table 4 shows a simple Time to Order
instance. The instructions at the end of the legs are, respectively, a prefetchNTA
and a regular load for the same cache line. If the prefetch comes first, the line
becomes the eviction candidate. If the load comes first, it (generally) does
not. The resulting LLC state difference can directly be amplified using the
prefetchNTA sequence (cf. Listing 1).

Convert: Time to Order (LLC).
Encodes a time difference into a line’s LLC caching status.

The Time to Order primitive is versatile. With some profiling, seemingly
unrelated input side channels (stateless or otherwise) can be converted into
LLC/L1 state changes, provided that a race can be found for which the outcome
reliably depends on the initial leakage type (e.g., cache line status). Other initial
leakage types include time-varying instructions, port contention [16, 17, 57],
branch predictor state [23], ROB contention [69, 55], DRAM contention [50]
and LLC interconnect contention [18, 19, 20]. We cover some of these examples
as case studies in Section 6 but leave a full exploration of all amplifiable CPU
side channels to future work.

5.3 Architectural Reordering
The final contribution of this section is architectural reordering, a novel integrated
conversion and measurement routine (cf. Figure 7). To preserve the semantics
of a given instruction stream, the processor always executes store operations
to the same address in program order. However, no such guarantees exist for
stores in parallel threads. By conditioning the order of store instructions in
different threads on a timing difference, an attacker can directly produce an

211



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

Time

read 1

Memory

read 2

Invoke Variable event Write 1

Fixed delay Write 2

… 2 1

Figure 7: Architectural reordering.

architectural state change without any timing source.
Accuracy. We use architectural reordering to infer the cache state of a line
(causing a hit or a miss in L1). We perform 100 runs of 10,000 iterations for
a random initial state. The median accuracy is 100% for hits and 99.98% for
misses.
Limitations. This technique relies on multiple threads and a mechanism for
these to modify the same memory location. The easiest way of accomplishing
this in the browser is with Web Workers and shared memory, which already
implies the availability of known high-resolution timers [24, 57]. However,
Architectural Reordering has an atypical behavioral footprint. Instead of
continuously increasing a value and then querying it, which is signature behavior
for a timing attack, the attacker thread performs two writes and a read to a
single memory location per timing measurement, while the helper thread only
performs a single write per measurement.

Convert + Measure: Architectural Reordering.
Eliminates explicit timing measurements by converting time differences into
differences in an architecturally visible value.

6 Case Studies
6.1 Extreme Amplification
6.1.1 Human Timers

As discussed in Section 4.3, our prefetch-based amplifier can produce compar-
atively huge timing differences based on a single initial cache hit or miss. It
is worth asking whether the complete elimination of all sources of time from
the execution environment would thwart CPU timing attacks at a fundamental

212



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

1 µs 10 µs 100 µs 1 ms 10 ms 100 ms 1 s 10 s

1 ms

1 s
1 min

1 h
1 d

Timer Granularity

Ex
ec

ut
io

n
T

im
e

Execution Time

0%

1%

2%

In
co

rr
ec

t
A

dd
re

ss
esError Rate

Figure 8: Constructing LLC eviction sets with the prefetch-based amplifier for
extremely coarse-grained timers (200 runs for 1 µs-100 ms, 25 runs for 1 s, 1 run
for 10 s).

level. To answer this question convincingly, we explore an artificially restrictive
setting where there are no timers on the attacker’s end, leaving them to rely
only on their human perception.

We perform a study on fifteen human participants, aged 20-30. Each
participant classifies 100 random single-shot side-channel observations as either
fast or slow. The machine is an Intel Core i7-7700K, with which the participants
interact over SSH. Participants are exposed to the measurement by a command
line tool that prints Start (and Stop) when the traversal pattern starts (and
ends), and are tasked to classify the runs corresponding to a single initial
cache hit or cache miss. Based on some manual calibration, we parametrize
the amplifier such that it produces a timing difference of 150 ms; the fast
traversal takes 16 ms, whereas the slow traversal takes 166 ms. Like in other
timing attacks, the participants first calibrate on a small number of practice
observations (although, of course, the threshold is perceptual and not numerically
quantified).

Together, the participants achieve an average accuracy of 98.4% (median
99%). Several participants achieve a perfect score. Note that the evaluation
includes all error sources, such as human error, jitter due to SSH and I/O, and
amplifier degradation due to noise.

6.1.2 Eviction Set Construction

As a relevant application, we also implement a routine to construct LLC eviction
sets with arbitrarily coarse-grained timers. We do not rely on the availability of
huge pages (2 MB or 1 GB), i.e., we only assume attacker control over the lower
12 bits of the physical address (4 KB pages).

We use the eviction set construction method due to Purnal et al. [46],
together with the prefetch-optimization due to Guo et al. [64]. The routine
tests individual cache lines for congruence in the LLC. To detect congruence, we

213



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

1 victim_preamble ();
2 x = calculate (_); // <--- contention source ---+
3 load(f(x)); // load that depends on x |
4 if ( secret ) { // |
5 _ = calculate (_); // <--- contention source ---+
6 }

Listing 3: Cross-core port contention leakage.

use the prefetch amplifier. If addresses A and B are congruent, they constantly
evict each other in a prefetch loop; otherwise, they do not. As A and B never
enter the cache as anything other than the eviction candidate, amplifying this
event is even more robust than for a generic side-channel setting (cf. Section 4.3).
Lines that demonstrate congruence are accumulated in an eviction set until the
desired number of addresses is obtained.

Figure 8 shows the execution time and error rate of the routine for varying
timer precisions, on an Intel Core i7-7700K (16-way LLC). The error rate is
the fraction of addresses that are not congruent with the randomly generated
target. To emulate timers of arbitrary coarseness, we instrument calls to the
rdtsc hardware counter. For the 1 s-granular timer, we use the Unix Epoch
instead, i.e., the number of seconds elapsed since midnight on January 1, 1970.

We even attempt to construct an eviction set using a 10-second granular
timer, representing an amplification of 8 orders of magnitude w.r.t. to the
timing difference between a cache hit and a cache miss (e.g., 100 ns). With a
runtime of less than 6 hours, the attempt is successful.

Amplify: Single-shot amplification up to seconds.
It is possible to amplify microarchitectural timing differences beyond any
timer restriction that can be practically imposed.

6.2 Amplifying Stateless Leakage

1,500 1,520 1,540 1,560 1,580 1,600 1,620 1,640 1,660 1,680 1,700
0

500
1,000

Load Arrival relative to the start of victim routine [cycles]

O
cc

ur
re

nc
e

port contention
no port contention

Figure 9: Fine-grained cross-core port contention attack.

214



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

1 load( BCGAB ); // Reinstate A; makes pattern repeatable
2

3 // first leg // second leg
4 x = load( SCOPE ); y = fixed_delay ();
5 y = load(G ^ y);
6

7 load(X ^ x ^ y); // Evict A or E

Listing 4: Repeatable Time to Order conversion.

6.2.1 Cross-Core Port Contention

Consider the code pattern in Listing 3, which leaks the boolean value of secret
through port contention [16, 17, 38]. If the operations on lines 2 and 5 use
the same execution ports, they interfere, delaying each other’s execution. As
ports are core-private resources, this stateless leakage is not directly visible
to processes running on other cores. However, there is an implicit Convert
performed by the victim code that still transmits this information; the presence
or absence of contention introduces a secret-dependent delay on the load on
line 3.
Fine-Grained Timer. We first expose the secret-dependent time of the
memory access using a high-precision timer. Later, we apply ShowTime to
decode the same information with a low-precision timer. We instantiate the
contention sequence calculate() as 16 vsqrtpd (floating point square root)
instructions. Figure 9 shows how the secret-dependent delay of the memory
access, relative to the start of the victim program, can be picked up across
cores by the high-precision Prime+Scope [46] attack. Note that the presence of
the load itself does not encode any side-channel information, i.e., it happens
independent of the secret. The time variation of the LLC eviction is roughly 70
cycles (i.e., less than 20 ns).

0.4M 0.6M 0.8M 1.0M 1.2M 1.4M 1.6M 1.8M
0

1,000
2,000
3,000
4,000

Amplifier output [cycles]

O
cc

ur
re

nc
e

port contention
no port contention

Figure 10: Coarse-grained cross-core port contention.

Coarse-Grained Timer. There are several challenges to exposing these
fine-grained time variations to a low-precision timer. First, the Convert stage
needs to implement an implicit threshold between the histograms in Figure 9,
and the result of this threshold should be encoded in a stateful microarchitectural

215



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

component from which it can be amplified. Second, the conversion requires a
high timing sensitivity, comparable to accessing the scope line, which is already
just sufficient enough to reveal the contention (cf. Figure 9).

Our solution is the conversion pattern in Listing 4. The cache state is first
prepared as follows. The LLC is prepared as in Prime+Scope, so the victim
load will evict a designated cache line, i.e., the scope line. The L1 is prepared
with the basic PLRU preparation pattern (cf. Section 4.1). The conversion is
made repeatable with load(BCGAB), which evicts line X if it took the place of A
(first leg won), but not if it took the place of E (second leg won). Therefore, if
the monitored load evicts the scope line during any of the iterations of Listing 4,
it is encoded in the L1 state. Before running the attack, we calibrate how often
it needs to be repeated, relative to the start of the victim routine, to implicitly
implement the threshold. As this conversion pattern takes only 30 cycles on
average, it is precise enough to implement the necessary implicit threshold in
Figure 9.

The complete ShowTime cascade is as follows. First, there is an unintentional
conversion from port contention into an LLC eviction that occurs at a secret-
dependent time. This secret-dependent time is converted into an L1 Reordering
event, where the order depends on whether the LLC eviction occurs during
the time that the attacker repeats the conversion pattern. Finally, the L1
Reordering event is amplified. Even though this cascade has several moving
parts, the results are satisfying, as can be observed in Figure 10.
Discussion. Behnia et al. [54] exploit a code pattern similar to Listing 3.
However, they question whether such a minor difference in load timing can be
captured by a cache attack on the LLC. Therefore, they require all conversions
to take place in the victim code, i.e., the victim itself should encode the time
difference in the LLC replacement policy. In our work, we show that this
requirement can be relaxed; high-precision LLC cache attacks can exfiltrate
minute time differences directly, with and without fine-grained timers.

If an attacker can co-locate a process on the victim’s CPU core, the contention
may be exposed with a direct Time to Order conversion. We leave an exploration
of this setting to future work.

6.2.2 Instantaneous CPU Frequency

Recently, attacks exploiting dynamic voltage and frequency scaling (DVFS)
have been proposed [47, 48]. With DVFS, the instantaneous frequency of a
CPU changes based on its power consumption which, in turn, may depend
on the data being processed. We now explore whether information on the
instantaneous CPU frequency can be exposed in the absence of direct interfaces
(e.g., cpufreq) and fine-grained timers.

Listing 5 (cf. Appendix A) contains the proof-of-concept code pattern. We
observe that Time to Order races can be orchestrated to be sensitive to the

216



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

100K 200K 300K 400K 500K 600K 700K 800K
0

200
400

Amplifier output [cycles]

O
cc

ur
re

nc
e

2900MHz
3400MHz

Figure 11: Exposing CPU frequency with crude timers.

instantaneous CPU frequency. We fix the CPU frequency using sudo cpupower
frequency-set on an Intel Core i5-7500, running Rocky Linux 8.7. We set it
to either 3400 MHz (the base frequency of the CPU) or 2900MHz, representing
a 15% frequency adjustment. Figure 11 shows that the resulting histograms
are clearly distinguishable. To our knowledge, we are the first to remark that
the CPU frequency, an inherently stateless microarchitectural property, can be
captured, converted, and amplified. We defer a comprehensive study of this
phenomenon, as well as the achievable frequency granularity, to future work.

Convert + Amplify: Stateless Side Channels.
Stateless timing leaks can be exposed with coarse-grained timers.

6.3 ShowTime in Restricted Environments
With ShowTime, we can construct LLC eviction sets in JavaScript, which is a key
prerequisite for several browser-based attacks, e.g., cross-core Prime+Probe [10],
Rowhammer [40, 41], and Spook.js [70]. In addition, finding addresses that
are L2/LLC-congruent permits the use of stronger PLRU amplifiers for the
remainder of the attack.

With coarse-grained timers, the number of measurements replaces the num-
ber of memory references as the bottleneck for the execution time. Therefore,
we use the group elimination method by Vila et al. [43] rather than the
Prime+Scope method [46]. We modify Vila’s JavaScript code [71] to use
ShowTime as the measurement. In particular, we use Time to Order to trans-
late the LLC eviction signal to the L1 cache and use the distance-3 PLRU
amplifier for robustness (cf. Listing 6 in Appendix A for details.)

We start with an initial set that is a superset of an eviction set with
95% probability (cf. [43]) and exclude the runs where this is not the case.
To obtain the ground truth, we verify the correctness of the eviction set us-
ing /proc/pagemap [71]. On a non-isolated website in Chrome 108, with a
performance.now() precision of 100 µs, we construct a fully correct eviction

217



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

Table 5: Converting CPU Side Channels.
Source Method Input Channel Output Channel

Behnia et al. [54] OoO Execution Port/MSHR Cont. LLC
Aimoniotis et al. [55] ROB Size ROB Pressure L1/LLC

Wang et al. [47] DVFS Power Freq. / Time

Back-Invalidation LLC Inclusiveness LLC L1
Time to Order OoO Execution Any L1/LLC

Arch. Reordering Thread Parallelism Any Data

set in 176 out of 250 runs, with a median runtime of 25 seconds. For this
proof-of-concept implementation, we did not exhaust all possible optimization
opportunities. As the objective of this work is to study microarchitectural at-
tacks in the face of coarse-grained timers, we also made no attempts to increase
the effective precision of the timing sources themselves.

Convert + Amplify: ShowTime in the browser.
ShowTime applies to restricted browser settings. It can be used to construct
LLC eviction sets with coarse-grained timers.

7 Related Work
Multi-Shot Amplification. Mcilroy et al. [35] provide a theoretical argument
for the availability of arbitrary multi-shot timing amplification on processors
implementing optimizations. Wikner et al. [37] and Schwarzl et al. [36] consider
multi-shot amplification for mounting Spectre attacks from JavaScript. Some
other works cope with low-resolution timers by aggregating the latency of many
memory accesses [72, 59], with the drawback of losing all spatial information
of the side channel. Rokicki et al. [38] amplify (stateless) port contention
from JavaScript in a covert channel setting, where multi-shot measurements
are possible.

Multi-shot amplification is also used for the software-based exploitation of
physical side-channels (e.g., power consumption [61] and CPU frequency [47, 48]).
Future work should investigate the feasibility of single-shot amplification for
these attack vectors.
Existing Conversions. Table 5 summarizes the prior work and our con-
tributions in the space of converting CPU side channels. Behnia et al. [54]
convert several sources of core-private contention to LLC caching status by
exploiting specifics of the LLC replacement policy. Aimoniotis et al. [55] exploit
that incorrectly speculated loads only get executed if they fit in the reorder
buffer (ROB) [69], converting ROB contention into caching status. Our work
contributes simple conversions of several side channels into state differences

218



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

that are amenable to single-shot amplification.
Disabling Timing Sources. Browsers already cripple timers [34, 33, 30, 31,
32, 56], but this is also proposed for native (mobile/desktop/cloud) code [28, 27].
Prior work demonstrates that, in some cases, attackers can build [25, 24, 8, 57]
or simply bring [73] their own timing sources. However, our work practically
demonstrates that even when attackers cannot use these methods, restricted
timers are not a holistic countermeasure against timing attacks.

Note that our findings do not threaten the validity of other side-channel
countermeasure classes, such as constant-time programming [74], isolation [75,
76] or randomization [77].
Concurrent Work. In concurrent work, Xiao et al. [78] leverage out-of-order
execution (“race gadgets”) to convert microarchitectural state changes, similar
to one of our conversion routines (Time to Order, cf. Section 5.2). However,
they do not consider amplifying stateless channels. They also contribute single-
shot amplifiers (“magnification gadgets”), including the L1 Reordering PLRU
amplifier, and others that are not cache-based. Though they suggest that
arbitrary amplification can be achieved, they do not demonstrate amplifying
timing differences beyond 100 µs. In our experiments, we overcome several
practical challenges to obtain timing differences that are larger by one to four
orders of magnitude.

Another concurrent work [79] uses transient execution to encode the caching
status of one cache line into many cache lines. In this manner, they obtain
single-shot amplification of cross-core cache events. Similar to our work, they
also construct LLC eviction sets in a browser environment using a 100 µs timer.

8 Conclusion
In this paper, we contributed the ShowTime framework to expose arbitrary
microarchitectural timing leaks in a single shot to coarse-grained timers. Our
techniques can capture cross-core and stateless microarchitectural leaks, bypass
currently imposed timer restrictions, and even amplify nanosecond-range timing
differences such that they are detectable by humans.

Acknowledgments
We thank the anonymous AsiaCCS reviewers for their feedback and the humans
for participating in the timer study. This research is partially funded by the
European Research Council (ERC #101020005) and the Flemish Government
through the FWO project TRAPS. It was also supported by the CyberSecurity
Research Flanders (#VR20192203), Horizon Europe (#101070008) and the

219



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

Research Fund KU Leuven. Antoon Purnal is supported by a grant of the
Research Foundation - Flanders (FWO).

References
[1] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The

case of AES. In Cryptographers’ Track at the RSA Conference on Topics in Cryptology
(CT-RSA), 2006.

[2] Daniel J Bernstein. Cache-timing attacks on AES, 2005.
[3] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk

Sunar. Cache Attacks Enable Bulk Key Recovery on the Cloud. In Cryptographic
Hardware and Embedded Systems (CHES), 2016.

[4] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low noise, l3 cache
side-channel attack. In USENIX Security Symposium, 2014.

[5] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel attacks
against kernel space aslr. In IEEE Symposium on Security and Privacy (S&P), 2013.

[6] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address space layout
randomization with intel tsx. In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2016.

[7] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard.
Prefetch side-channel attacks: Bypassing smap and kernel aslr. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016.

[8] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. Aslr
on the line: Practical cache attacks on the mmu. In Network and Distributed System
Security Symposium (NDSS), 2017.

[9] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get
off of my cloud: Exploring information leakage in third-party compute clouds. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2009.

[10] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis.
The spy in the sandbox: Practical cache attacks in javascript and their implications. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015.

[11] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Au-
tomating attacks on inclusive last-level caches. In USENIX Security Symposium, 2015.

[12] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level cache
side-channel attacks are practical. In IEEE Symposium on Security and Privacy (S&P),
2015.

[13] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A shared cache attack that
works across cores and defies VM sandboxing – and its application to AES. In IEEE
Symposium on Security and Privacy (S&P), 2015.

[14] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation leak-aside
buffer: Defeating cache side-channel protections with tlb attacks. In USENIX Security
Symposium, 2018.

[15] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing attack on
openssl constant-time rsa. Journal of Cryptographic Engineering, 2017.

[16] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García,
and Nicola Tuveri. Port contention for fun and profit. In IEEE Symposium on Security
and Privacy (S&P), 2019.

220



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

[17] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro
Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. Smotherspectre: Exploit-
ing speculative execution through port contention. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2019.

[18] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. Lord of the ring(s):
Side channel attacks on the cpu on-chip ring interconnect are practical. In USENIX
Security Symposium, 2021.

[19] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. Meshup: Stateless cache side-
channel attack on cpu mesh. In IEEE Symposium on Security and Privacy (S&P),
2022.

[20] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and Mengjia
Yan. Don’t mesh around: Side-channel attacks and mitigations on mesh interconnects.
In USENIX Security Symposium, 2022.

[21] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and Josep Torrellas. Binoculars:
Contention-based side-channel attacks exploiting the page walker. In USENIX Security
Symposium, 2022.

[22] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Dedup est machina:
Memory deduplication as an advanced exploitation vector. In IEEE Symposium on
Security and Privacy (S&P), 2016.

[23] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Branch-
scope: A new side-channel attack on directional branch predictor. ACM SIGPLAN
Notices, 2018.

[24] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fantastic
timers and where to find them: High-resolution microarchitectural attacks in javascript.
In Financial Cryptography and Data Security, 2017.

[25] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Malware guard extension: Using SGX to conceal cache attacks. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), 2017.

[26] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard.
Armageddon: Cache attacks on mobile devices. In USENIX Security Symposium, 2016.

[27] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine grained timers
in xen. In ACM Workshop on Cloud Computing Security (CCSW), 2011.

[28] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate side-channel attacks.
In International Symposium on Computer Architecture (ISCA), 2012.

[29] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain times. In
USENIX Security Symposium, 2016.

[30] W3C. High resolution time. https://www.w3.org/TR/hr-time-3/, 2022.
[31] Google. Making your website “cross-origin isolated” using COOP and COEP. https:

//web.dev/coop-coep/, 2020.
[32] Google. Align performance api timer resolution to cross-origin isolated capability -

chrome platform status. https://chromestatus.com/feature/6497206758539264, 2021.
[33] WebKit. What spectre and meltdown mean for webkit. https://webkit.org/blog/

8048/what-spectre-and-meltdown-mean-for-webkit/, 2018.
[34] MDN. performance.now() - web apis | mdn. https://developer.mozilla.org/en-US/

docs/Web/API/Performance/now, 2022.

221



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

[35] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest. Spectre
is here to stay: An analysis of side-channels and speculative execution. arXiv:1902.05178,
2019.

[36] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas Schuster,
Michael Schwarz, and Daniel Gruss. Robust and scalable process isolation against spectre
in the cloud. In European Symposium on Computer Security (ESORICS), 2022.

[37] Johannes Wikner, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Spring: Spectre
returning in the browser with speculative load queuing and deep stacks. In Workshop
On Offensive Technologies (WOOT), 2022.

[38] Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi Oren. Port contention
goes portable: Port contention side channels in web browsers. In ACM SIGSAC Asia
Conference on Computer and Communications Security (AsiaCCS), 2022.

[39] Stephen Röttger and Artur Janc. A spectre proof-of-concept for
a spectre-proof web. https://security.googleblog.com/2021/03/
a-spectre-proof-of-concept-for-spectre.html, 2021.

[40] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A remote
software-induced fault attack in javascript. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2016.

[41] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida, and
Kaveh Razavi. Smash: Synchronized many-sided rowhammer attacks from javascript. In
USENIX Security Symposium, 2021.

[42] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas
Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. Half-double: Hammering from
the next row over. In USENIX Security Symposium, 2022.

[43] Pepe Vila, Boris Köpf, and José F. Morales. Theory and practice of finding eviction sets.
In IEEE Symposium on Security and Privacy (S&P), 2019.

[44] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W. Fletcher, Roy H.
Campbell, and Josep Torrellas. Attack directories, not caches: Side channel attacks in a
non-inclusive world. In IEEE Symposium on Security and Privacy (S&P), 2019.

[45] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. Systematic analysis
of randomization-based protected cache architectures. In IEEE Symposium on Security
and Privacy (S&P), 2021.

[46] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+scope: Overcoming the
observer effect for high-precision cache contention attacks. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2021.

[47] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham, Christo-
pher W Fletcher, and David Kohlbrenner. Hertzbleed: Turning power side-channel
attacks into remote timing attacks on x86. In USENIX Security Symposium, 2022.

[48] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. Frequency throttling
side-channel attack. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2022.

[49] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. Secsmt: Securing
smt processors against contention-based covert channels. In USENIX Security Symposium,
2022.

[50] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard. Drama: Exploiting dram addressing for cross-cpu attacks. In USENIX Security
Symposium, 2016.

222



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

[51] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown: Reading kernel memory from user space. In USENIX Security
Symposium, 2018.

[52] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen. Prime+abort:
A timer-free high-precision L3 cache attack using intel TSX. In USENIX Security
Symposium, 2017.

[53] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[54] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Zhao, Xiang
Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam Morrison, Frank
Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Abhishek Basak, and Alaa
Alameldeen. Speculative interference attacks: Breaking invisible speculation schemes. In
ASPLOS, 2021.

[55] Pavlos Aimoniotis, Christos Sakalis, Magnus Själander, and Stefanos Kaxiras. Reorder
buffer contention: A forward speculative interference attack for speculation invariant
instructions. In IEEE Computer Architecture Letters, 2021.

[56] The Tor Project. Commit: Bug 1517: Reduce precision of time for
Javascript. . https://gitlab.torproject.org/tpo/applications/tor-browser/-/
commit/dcd5fcc102a3eb19c20013542fa3ca399db66da4, 2015.

[57] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In search of lost time:
A review of javascript timers in browsers. In IEEE European Symposium on Security
and Privacy (EuroS&P), 2021.

[58] Andreas Kogler, Daniel Weber, Martin Haubenwallner, Moritz Lipp, Daniel Gruss, and
Michael Schwarz. Finding and exploiting cpu features using msr templating. In IEEE
Symposium on Security and Privacy (S&P), 2022.

[59] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren, and
Yuval Yarom. Prime+probe 1, javascript 0: Overcoming browser-based side-channel
defenses. In USENIX Security Symposium, 2021.

[60] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and Manuel
Costa. Strong and efficient cache side-channel protection using hardware transactional
memory. In USENIX Security Symposium, 2017.

[61] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio
Canella, and Daniel Gruss. Platypus: Software-based power side-channel attacks on x86.
In IEEE Symposium on Security and Privacy (S&P), 2021.

[62] Intel. Intel Transactional Synchronization Extensions (Intel TSX) Asynchronous
Abort. https://software.intel.com/security-software-guidance/deep-dives/
deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort,
2019.

[63] MDN. Firefox 79 release notes for developers. https://developer.mozilla.org/en-US/
docs/Mozilla/Firefox/Releases/79#javascript, 2020.

[64] Yanan Guo, Xin Xin, Youtao Zhang, and Jun Yang. Leaky way: A conflict-based cache
covert channel bypassing set associativity. In IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2022.

[65] Andreas Abel and Jan Reineke. nanobench: a low-overhead tool for running microbench-
marks on x86 systems. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2020.

223



Antoon Purnal, Marton Bognar, Frank Piessens and Ingrid Verbauwhede

[66] Samira Briongos, Pedro Malagon, Jose M. Moya, and Thomas Eisenbarth.
RELOAD+REFRESH: Abusing cache replacement policies to perform stealthy cache
attacks. In USENIX Security Symposium, 2020.

[67] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. Cachequery: Learning replace-
ment policies from hardware caches. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020.

[68] Samira Briongos, Ida Bruhns, Pedro Malagón, Thomas Eisenbarth, and José M. Moya.
Aim, wait, shoot: How the cachesniper technique improves unprivileged cache attacks.
In IEEE European Symposium on Security and Privacy (EuroS&P), 2021.

[69] Henry Wong. Measuring Reorder Buffer Capacity, May 2013.
[70] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel Genkin, Eyal

Ronen, and Yuval Yarom. Spook.js: Attacking chrome strict site isolation via speculative
execution. In IEEE Symposium on Security and Privacy (S&P), 2022.

[71] Pepe Vila. Tool for testing and finding minimal eviction sets. https://github.com/
cgvwzq/evsets, 2019.

[72] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi
Oren, and Yuval Yarom. Robust website fingerprinting through the cache occupancy
channel. In USENIX Security Symposium, 2019.

[73] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Double trouble: Combined het-
erogeneous attacks on non-inclusive cache hierarchies. In USENIX Security Symposium,
2022.

[74] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in Cryptology - CRYPTO, 1996.

[75] Dan Page. Partitioned cache architecture as a side-channel defence mechanism. In IACR
Cryptol. ePrint Arch. 2005/280, 2005.

[76] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In USENIX Security Symposium, 2016.

[77] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software cache-based
side channel attacks. In International Symposium on Computer Architecture (ISCA),
2007.

[78] Haocheng Xiao and Sam Ainsworth. Hacky racers: Exploiting instruction-level parallelism
to generate stealthy fine-grained timers. In ASPLOS, 2023.

[79] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen, and Yuval
Yarom. The gates of time: Improving cache attacks with transient execution. In USENIX
Security Symposium, 2023.

224



ShowTime: Amplifying Arbitrary CPU Timing Side Channels

Appendix
A Extra Conversion Patterns

1 // Prepare prefetch amplifier
2 dep = prefetchNTA (A);
3

4 // Shared Dependency
5 dep = load(X + dep); // Cache miss
6

7 // Compute chain races against memory loads ,
8 // the outcome of this race is frequency - dependent
9

10 // First leg // Second leg
11 dep1 = load(Y + dep); dep2 = COMPUTE_CHAIN (dep);
12 dep1 = load(A + dep1); dep2 = load(B + dep2);
13

14 // evicts A if the first leg won
15 dep = load(C + dep1 + dep2);
16

17 // Amplify time difference
18 prefetch_amplifier (D, A); // Fast if A is cached

Listing 5: Instantaneous frequency measurement. The loads of X and Y are
cache misses, and only A-D map to the same LLC set.

1 // Test whether group still evicts victim
2 dep = load( victim );
3 dep = evict ( candidate_set ^ dep);
4

5 // Start timer
6 start = performance .now ();
7

8 // Prepare PLRU amplifier
9 dep = prepare_PLRU (dep);

10

11 // first leg // second leg
12 dep1 = load( victim ^ dep); dep2 = delay (dep);
13 dep1 = load(D ^ dep1); dep2 = load(H ^ dep2);
14

15 // amplify the difference
16 amplify_L1 (dep1 , dep2);
17

18 // End timer
19 end = performance .now ();

Listing 6: Constructing LLC eviction sets.

225





Curriculum Vitae

Antoon (Toon) Purnal obtained a MSc degree in electrical engineering at KU
Leuven in 2018. In September 2018, he joined COSIC as a PhD candidate. His
research was generously funded by a personal grant from the Fund for Scientific
Research Flanders (FWO). During the summer of 2022, he interned at Intel
Labs to work on microarchitectural security.

227







FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

COSIC
Celestijnenlaan 200A box 2402

B-3001 Leuven
antoon.purnal@esat.kuleuven.be

https://www.esat.kuleuven.be/cosic/


	Abstract
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	I Cache Side-Channel Attacks and Defenses
	Introduction
	Main Contributions
	Other Contributions
	Organisation of this Dissertation

	Background
	CPU Organization
	Layers of Abstraction
	Hardware Organization
	Software Organization

	Cache Hierarchy
	Working Principle
	Multi-level Cache Hierarchy
	Cache Metadata
	Interacting with the Cache

	Microarchitectural Timing Side Channels
	Conclusion

	Cache Side-Channel Attacks
	Microarchitectural Timing Attacks
	Attack Targets
	Threat Models
	Shared Microarchitectural Resources
	Comparing Microarchitectural Leakage Sources
	Focus of this Dissertation

	Cache Attacks
	Cache Attack Techniques
	Cross-Core Cache Attacks
	Routines for Constructing Eviction Sets
	Practical Considerations
	Relation to Other Microarchitectural Attacks

	My Contributions
	Conclusion

	Defenses Against Cache Side-Channel Attacks
	Countermeasure Strategies
	Remove the Channel
	Decrease the Signal-to-Noise Ratio of the Channel
	Block the Encoding of the Secret
	Block the Decoding of the Secret
	Detect the Attack at Runtime

	Randomization-based Protected Caches
	My Contributions
	Conclusion

	Conclusion
	Bibliography

	II Publications
	Prime+Scope: Overcoming the Observer Effect for High-Precision Cache Contention Attacks
	Double Trouble: Combined Heterogeneous Attacks on Non-Inclusive Cache Hierarchies
	Systematic Analysis of Randomization-based Protected Caches
	ShowTime: Amplifying Arbitrary CPU Timing Side Channels
	Curriculum Vitae


