
Prime+Scope: Overcoming the Observer Effect
for High-Precision Cache Contention Attacks

Antoon Purnal
imec-COSIC, KU Leuven

Furkan Turan
imec-COSIC, KU Leuven

Ingrid Verbauwhede
imec-COSIC, KU Leuven

ABSTRACT

Modern processors expose software to information leakage through
shared microarchitectural state. One of the most severe leakage
channels is cache contention, exploited by attacks referred to as
Prime+Probe, which can infer fine-grainedmemory access patterns
while placing only limited assumptions on attacker capabilities.

In this work, we strengthen the cache contention channel with
a near-optimal time resolution. We propose Prime+Scope, a cross-
core cache contention attack that performs back-to-back cache
contention measurements that access only a single cache line. It
offers a time resolution of around 70 cycles (25ns), while main-
taining the wide applicability of Prime+Probe. To enable such a
rapid measurement, we rely on the deterministic nature of mod-
ern replacement policies and their (non-)interaction across cache
levels. We provide a methodology to, essentially, prepare multiple
cache levels simultaneously, and apply it to Intel processors with
both inclusive and non-inclusive cache hierarchies. We characterize
the resolution of Prime+Scope, and confirm it with a cross-core
covert channel (capacity up to 3.5Mbps, no shared memory) and
an improved attack on AES T-tables. Finally, we use the properties
underlying Prime+Scope to bootstrap the construction of the evic-
tion sets needed for the attack. The resulting routine outperforms
state-of-the-art techniques by two orders of magnitude.

Ultimately, our work shows that interference through cache
contention can provide richer temporal precision than state-of-the-
art attacks that directly interact with monitored memory addresses.

CCS CONCEPTS

• Security and privacy→ Software and application security;
Systems security.

KEYWORDS

Cache Attacks, Cache Side-Channels, Microarchitecture

ACM Reference Format:

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention At-
tacks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’21), November 15–19, 2021, Virtual Event,

Republic of Korea. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3460120.3484816

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484816

1 INTRODUCTION

Modern processors comprise many hardware components that,
transparently to the programmer, enhance average software perfor-
mance. Several such components, with the cache hierarchy as the
leading example, may be shared across software-defined security
boundaries. Through their access patterns, programs may unwill-
ingly encode secret information into shared cache state, which can
be extracted by a co-located adversary using a timing side chan-
nel. In particular, she first prepares the cache state and afterwards
measures it to infer the changes produced by other programs.

Several techniques have been proposed to prepare and measure
the cache state. While some can only monitor accesses to shared
memory between attacker and victim, or require specific proces-
sor features, other techniques have no such prerequisites and are
purely based on contention for cache resources. By targeting core-
shared cache levels, such as the last-level cache (LLC) [31, 37], or
the coherence directory (CD) [65], an attacker can measure cache
contention for victim programs running on other processor cores.

Known mostly as Prime+Probe, cache contention attacks are
widely applicable. The contention channel leaks information across
virtual machine boundaries [31, 37, 47], to and from sandboxed code
(e.g., in the browser [41, 53]), or even over the network [33]. It has
been used to extract sensitive information of various kinds, such as
cryptographic keys [42], user input [33, 47], kernel information [29]
and browsing behavior [53]. It also enables establishing covert
channels [37–39] and, recently, transient execution attacks [22, 48].

An important metric of cache attack techniques is their temporal

resolution, i.e., the precision with which they can localize victim
memory accesses in the time domain. The finer the resolution of
the attack, the greater the visibility into data accesses and con-
trol flow of victim applications. This is of special importance in
the general setting, where the attacker monitors victim behavior
asynchronously and victim accesses may occur at any given time.

In case of insufficient time precision, prior works slow down the
victim application (e.g., [3, 4, 9, 21]), or interrupt it heavily (e.g., [27,
40]), to amplify secret-dependent time differences. Instead of such
performance degradation of the victim, which may not always be
possible, this work pursues the opposite direction and investigates
whether the time precision of cache attacks can be improved (and
optimized). In particular, we identify two key challenges to enhance
the time resolution of state-of-the-art cache contention attacks.

First, the main challenge to improve the precision of cache at-
tacks, in general, is the observer effect, i.e., the phenomenon where
the act of measuring a system affects its state. Many techniques suf-
fer from it, often requiring the state change of every measurement
to be undone before the next one can be performed. To minimize
the influence of this effect, cache attacks are often discretized along
the time axis in windows of fixed duration (e.g., [3, 37, 65, 67, 69]).
However, this places fundamental limits on their time resolution.

https://doi.org/10.1145/3460120.3484816
https://doi.org/10.1145/3460120.3484816
https://doi.org/10.1145/3460120.3484816

Second, the cache contention channel, in particular, faces another
bottleneck. For Prime+Probe, each probe accesses as many cache
lines as the associativity of the target structure, e.g., at least 11 ways
for core-shared caches on modern Intel CPUs. Therefore, the time
resolution is structurally bounded by the time it takes to access all
these lines, even if the observer effect were to be overcome.

In this paper, we seek to optimize the resolution of Prime+Probe-
style attacks. To this end, we ask the following main questions:
Is it possible to bypass the observer effect? Can contention be inferred

by repeatedly measuring the access latency of a single cache line?

In this work, we make the surprising observation that the cache
contention channel can have a higher time resolution than tech-
niques that access monitored addresses directly. We propose Prime+
Scope, a high-precision cross-core cache contention attack, whose
measurement is both repeatable (i.e., the cache state does not need
to be reinstated after every measurement), and essentially optimal

(i.e., it performs a single memory access). Prime+Scope can monitor
events asynchronously with a precision in the order of 25ns, signif-
icantly outperforming comparable techniques. At the same time,
Prime+Scope inherits the general applicability of Prime+Probe.

Prime+Scope prepares the cache more precisely than traditional
cache contention attacks. We obtain fast and effective Prime pat-
terns using both an automated and a handcrafted methodology
(resp. for inclusive and non-inclusive Intel LLCs). In the end, we
find Prime+Scope to apply to all tested Intel CPUs of the last decade.

To confirm the superior time precision of Prime+Scope, we per-
form a quantitative comparison with state-of-the-art techniques.
We also implement a cross-core covert channel on a last-level cache
(LLC) and a coherence directory (CD). Symbols are encoded tempo-
rally in slots of no more than 80-120 processor cycles. The LLC/CD
channels reach a capacity of 3.5Mbps and 3.1Mbps, respectively.

We evaluate Prime+Scope on a known-vulnerable AES imple-
mentation. With its fine temporal precision, it can extract the key
material with 5x-25x fewer encryptions than Prime+Probe.

Finally, we bootstrap our newly discovered primitive to create a
straightforward, portable and linear-time eviction set construction
routine, which outperforms previous techniques by 100-600x.

Summarized, this paper makes the following main contributions:
- We present Prime+Scope, a generic cross-core cache contention
primitive with near-optimal temporal resolution.

- To prepare the cache for continuous measurement, we propose
PrimeTime, a methodology to find efficient Prime patterns.

- We evaluate Prime+Scope using micro-benchmarks, a high-
capacity covert channel, and a high-precision attack on AES.

- Using the principles underlying Prime+Scope, we present fast
and simple routines to construct LLC/CD eviction sets.

We have disclosed our findings to Intel. To facilitate reproduction
of our research, artifacts are made available at

https://www.github.com/KULeuven-COSIC/PRIME-SCOPE

This article is organized as follows. Section 2 provides the neces-
sary background. Section 3 explores the conditions for back-to-back
cache measurements. Section 4 exposes Prime+Scope, our main re-
sult. Section 5 covers the efficient preparation of the cache state, and
Section 6 evaluates Prime+Scope for micro-benchmarks and con-
crete examples. Section 7 positions our findings, Section 8 discusses
limitations and countermeasures, and Section 9 concludes.

2 PRELIMINARIES

2.1 Caches

To overcome the comparatively high latency of memory lookups,
caches are buffers that keep soon-to-be used data close to the CPU.
Caches operate on fixed-size (e.g., 64 bytes) memory blocks called
cache lines, and are typically set-associative, referring to their or-
ganization along sets and ways. Cache lines are mapped to sets
based on their memory address, and addresses mapping to the same
set are called congruent. The maximal number of congruent lines
that can reside in the cache at any given time is determined by the
number of ways𝑊 , also referred to as the associativity.

When caching a new line exceeds the associativity, one line in
the set is evicted; in this paper, we refer to that line as the eviction
candidate (EVC). The EVC is determined by the replacement policy,
which is implemented by a (complex) state machine at the set-level,
for which the state transitions depend on the accesses to the set.

Contemporary Intel processors feature a three-level cache hier-
archy, where the access latency increases along with the distance
from the CPU. When a CPU core references a memory address,
the cache line containing this address is retrieved from the closest
cache level that has a valid copy. The first two levels (L1 and L2)
are organized separately for every core, while the last-level cache
(L3, or LLC) is shared among all the cores. The majority of Intel
processors have inclusive LLCs, meaning that cache lines present
in the L1 and L2 caches must also be present in the LLC. However,
recent Intel servers feature higher core counts and larger private
caches, prompting the adoption of non-inclusive LLCs. In such cache
hierarchies, the LLC may or may not contain lines that are present
in L1 or L2, reducing the storage overhead due to inclusion.

2.2 Cache Side-Channel Attacks

Over the last years, several techniques have been proposed to infer
memory access patterns by other programs through observation
of shared cache state. The two most prominent attack classes are
represented, respectively, by Flush+Reload and Prime+Probe. In
this overview, and in the paper, we focus on attacks across cores.

Flush+Reload-style techniques. If the memory address to be
monitored exists in memory shared with the attacker, she is able to
access it directly, allowing to infer memory activity by other pro-
cesses at cache-line granularity. The representative technique for
this attack class is Flush+Reload [27, 67], which removes (flushes)
the cache line containing a target address from the cache, and later
determines if the victim accessed it by its reload time. If cache flush-
ing is not available, Evict+Reload [26] replaces it with eviction.

Provided that the time until completion of the clflush instruc-
tion depends on the presence of the target in the cache, it can
be used to both prepare and measure the cache state. This tech-
nique, referred to as Flush+Flush [25], has a higher time resolution
than Flush+Reload. However, the more subtle time-dependence
of cache flushes results in a comparatively low cross-core accuracy.

Themain drawback of Flush+Reload-style attacks is their struc-
tural dependence on shared memory with a victim, which is harder
to obtain for an attacker than only co-location. Moreover, a cache
flush instructionmay also not be available in restricted contexts, e.g.,
in the browser [5, 25], or generally for unprivileged processes [34].

2

(i) Windowed techniques cope with blind spots by waiting between

preparation and measurement, lowering their time precision

(ii) Windowless techniques measure the cache state continuously

without waiting, and revert the state only after detecting an event

Figure 1: Cache Manipulation techniques in the windowed vs. windowless paradigms.

Prime+Probe-style techniques. Cache contention attacks, often
synonymously referred to as Prime+Probe attacks, prime a full
cache set and measure the time it takes. Activity in this cache set
by other processes will evict one or more of the attacker’s lines,
which is reflected in a higher latency to complete the prime.

For a cross-core attack, an adversary generally targets an in-
clusive structure shared with the victim. The inclusive property
guarantees the eviction of congruent addresses from the victim’s
private caches, ensuring that future victim accesses to them indeed
generate contention on the measured set. In cache hierarchies with
an inclusive last-level cache (LLC), this requirement is readily ob-
tained [31, 37]. For non-inclusive Intel caches, a suitable structure
has been found in the coherence directory (CD) [65], which keeps
track of lines in all the L2 caches. It is organized in sets, like the
LLC, with the same function to index memory addresses into sets
and slices. Instead of priming the LLC, the attacker primes the CD,
evicting the target address from the CD and, due to its inclusion
property, also from the victim’s private L1/L2 caches. When lines
are evicted from the CD, they are moved to the LLC [65].

To measure contention on the LLC (or CD), an attacker needs to
obtain memory addresses that are mapped to the same set. In the
presence of unknown physical address bits or cache slices, these
so-called eviction sets need to be obtained at runtime [37, 60, 65].

As a variant of Prime+Probe, Prime+Abort [18] is a contention-
informed attack using Intel TSX. As TSX transactions are aborted
upon eviction of certain lines from the LLC, it is amenable to mea-
sure LLC contention, as attack [18] or defense [23]. Intel TSX may
not be exposed to an attacker (e.g., from the browser), may be
disabled for security reasons [30], or may not be available at all.

Cache contention attacks offer a spatial granularity of sets, which
is inferior to the cache-line granularity of shared-memory attacks.
However, due to the large number of sets in modern LLCs/CDs, the
spatial information encoded in cache contention is still quite large.

3 CACHE MANIPULATION PARADIGMS

Assume an attacker wants to spy on a cross-core event, i.e., one or
more memory accesses by a victim program running on another
CPU core. All cache attack techniques first prepare the cache state,
and then measure it to infer the presence or absence of an event.

This section first revisits why some techniques need to allocate a
waiting period between preparation and measurement, essentially

partitioning the time axis into windows. Then, it examines the
conditions under which a windowless paradigm can be adopted.

3.1 Windowed Paradigm

Blind Spots. To see why cache attacks are often organized in
discrete time windows, consider the traces in Figure 1i. The first
Flush+Reload trace (Figure 1i-A) continuously flushes and reloads
a target. Such an application of Flush+Reload fails to detect many
events. In particular, events that occur during the period slightly
before the Reload, until the Flush has evicted the target, remain
undetected [3, 67]. We refer to such a period as a blind spot.

To reduce the effect of blind spots on the detection rate, a wait
stage may be inserted, i.e., a predetermined idle period between
preparation and measurement. As in Figure 1i-B, such an organiza-
tion detects the events that occur during the wait stage.

Other techniques, like Evict+Reload, Flush+Flush, and Prime+
Probe, can also be instantiated like this (cf. Figure 1i-C-D-E). Evict+
Reload behaves similarly to Flush+Reload, but has a larger blind
spot as cache eviction is slower than flushing. In Section 3.2, we
will see which techniques can be used without blind spots.

Resolution. The temporal resolution of windowed techniques
is limited by the combined duration of the preparation, wait and
measurement stages. In particular, the waiting period marks a trade-
off between the accuracy and resolution of the attack. The larger the
blind spot, the lower the resolution for the same detection accuracy.

Despite this limitation, windowed techniques such as Flush+
Reload can be very powerful in practice. For instance, blind spots
can be bypassed when the attacker controls the timing of the event
(e.g., by synchronizing [12, 32, 42, 61] or interleaving [27, 68] with
the victim). The limitation is also attenuated for infrequent events
(e.g., user behavior [26, 41]), or when lower detection rates are tol-
erable (e.g., to profile a binary [26] or capture traces [28]). The miss
probability may also be reduced by targeting events that reference
the same line multiple times, e.g., loops [67] or function calls [8].

3.2 Windowless Paradigm

To understand how some techniques can increase the time resolu-
tion by avoiding windows [18, 56], we identify the two sources of
blind spots. Both sources are an expression of the observer effect,
i.e., the attacker perturbs the cache state by measuring it.

3

#1: Non-preserving. We refer to a cache measurement as pre-
serving when, in the absence of an event, the relevant cache state
before and after the measurement is equivalent. If the measurement
is not preserving, monitoring cannot continue without undoing
the changes caused by the measurement. Hence, non-preserving
measurements trigger a repeated preparation phase, which natu-
rally introduces a period of time in which victim events are missed
(cf. Figure 1i). For instance, the Reload measurement in Flush+
Reload is non-preserving, so it needs to be followed by a Flush,
and events occurring at the beginning of the Flush are missed
[3, 67]).

#2: Non-concurrent. We refer to a cache measurement as con-
current when it detects events that temporally overlap with it. De-
pending on the degree of overlap between event and measurement,
an event coinciding with measurement 𝑗 may be detected during
measurement 𝑗 or 𝑗 + 1, but will not be missed, roughly speaking.
For instance, the Reload in Flush+Reload is non-concurrent, as
events occurring right before or during the Reload are missed [67].

Non-preserving measurements cannot be concurrent, as the nec-
essary preparation phase erases all relevant state changes, rendering
them unobserved. Non-concurrent measurements, even if they are
preserving, are a source of blind spots, resulting in the need for a
waiting interval to obtain the desired detection accuracy. It should
also be noted that measurements can be concurrent on one proces-
sor and non-concurrent on another (e.g., Flush, cf. Section 6.1).

Going Windowless. Cache measurements that are preserving and
concurrent can be performed back-to-back while maintaining their
detection accuracy. As a result, they enable a windowless paradigm
that maximizes their time resolution. This paradigm first prepares
the relevant cache state, and then continuously measures it until an
event is observed. Only upon detection of an event, the preparation
phase is repeated to continue monitoring for events.

In Prime+Abort [18], the cache measurement occurs implicitly,
through the TSX abort. Hence, it is preserving and concurrent, and
has a natural windowless instantiation (cf. Figure 1ii-F). Although
it is advertised as a distinguishing feature for Prime+Abort, other
cache attack techniques can also avoid intermittent wait stages.

Van Bulck et al. [56] demonstrate awindowless Flush+Flush [25]
(cf. Figure 1ii-G). On some platforms, Flushmeasurements are non-
concurrent (cf. Section 6.1). If the detection accuracy is unsatisfac-
tory, one can resort to a windowed instantiation, as in Figure 1i-D.

We note that even Prime+Probe can be windowless [51] (cf.
Figure 1ii-H), provided that the Probemeasurement does not access
more congruent addresses than the associativity𝑊 of the target
structure. Indeed, it is preserving (if all𝑊 lines are simultaneously
in the target structure, they will still be after a repeated access)
and concurrent (an event will cause a miss on at least one of the
attacker’s lines at some point, regardless of overlap.)

Time Resolution. The advantage of windowless techniques is
that their time precision is only fundamentally determined by the
throughput of the measurement phase. Therefore, the duration of
the preparation phase is of secondary importance for the resolution,
as it only needs to be performed right after detecting an event.

3.3 This Work: Prime+Scope

This work sets out to optimize the resolution of cache-timing at-
tacks, while maintaining only the basic requirements of cache con-
tention to ensure that the technique is future-proof and suitable
for restricted environments. In particular, we do not rely on shared
memory between attacker and victim, or special ISA or processor
features (e.g., clflush or Intel TSX). We achieve this by organizing
the cache state such that the contention measurement is repeatable,
i.e., it is preserving and concurrent, and optimally short, i.e., it con-
sists of a single cache access. We call this technique Prime+Scope,
and depict it in Figure 1ii-I. In the following section, we outline its
core principles and instantiate it for different cache hierarchies.

4 PRIME+SCOPE

4.1 Threat Model

The adversary assumed in this work is able to execute unprivileged
code on the same physical processor as a victim program. The
attacker code need not be executed on the same core as the victim
code, and the attacker is not assumed to be able to interrupt or
otherwise control the victim program. Furthermore, we do not
assume that attacker and victim have a shared memory region.

4.2 General Description

As described in Section 2.1, modern cache hierarchies comprise
different levels. In what follows,𝐶𝑆 denotes the shared and inclusive
cache structure in which contention is to be measured, and 𝐶𝑃

denotes one of the attacker’s private caches (e.g., the L1 cache).
Compared to existing cache contention channels, Prime+Scope

has two additional core requirements:

1 The eviction candidate in the shared and inclusive target struc-
ture (𝐶𝑆) can be accurately predicted.

2 Reads served from a lower-level cache (𝐶𝑃) do not influence
the replacement state of the target structure (𝐶𝑆).

1 EvictionCandidate.When a new line is to be installed into a
cache set, among all available lines (ways) in the set, a chosen one is
replaced with the new line. In this paper, we call that chosen line the
Eviction Candidate (EVC). The candidate is determined by the cache
replacement policy, which is implemented at the cache-set level as
a state machine. For instance, the eviction candidate for the LRU
policy is the cache line that has least recently been used. Though
modern processors implement more sophisticated replacement poli-
cies, they are often deterministic [1, 2, 11]. Therefore, specific access
patterns can mold the replacement policy machinery into a state
where a chosen cache line is the eviction candidate [11, 61].

Awareness of the EVC in 𝐶𝑆 permits to observe contention by
only measuring EVC latency, as a new cache line fill evicts the
EVC by definition. However, the attacker suffers from the observer
effect, i.e., measuring the access latency of the EVC may change
it to another line. To make the measurement preserving, Prime+
Scope relies on another common property of multi-level caches.

2 Low-Level Reads. Prior work observed that the replacement
state of inclusive Intel LLCs only depends on memory requests
served by the LLC, not those served by the lower-level caches [2, 11,
59]. Instead of bypassing this filtering property (e.g., by enforcing

4

VictimAttacker
➠

S𝐶𝑃

𝐶𝑆 S

(i) Prime fixes S as the EVC in

𝐶𝑆 , which remains the case for

following Scope operations.

VictimAttacker

➠

𝐶𝑃

𝐶𝑆

(ii) The victim access evicts S

(=EVC) from 𝐶𝑆 and 𝐶𝑃 , result-

ing in high access latency for S.

Figure 2: Working principle of Prime+Scope

L1/L2 misses), our work explicitly relies on it to make the cache
measurement preserving, and thus, overcome the observer effect.

Prime+Scope. Based on these two key ingredients, we propose
Prime+Scope as a windowless technique to monitor cache con-
tention. It allows an attacker to monitor victim accesses to a prede-
termined target address in two steps. The Prime step serves two
purposes, as in Figure 2i. First, it evicts the target from the𝐶𝑆 using
an eviction set. Second, it performs the eviction with a specific ac-
cess pattern that fixes a chosen line from the eviction set, denoted
as scope line (S), as the EVC in 𝐶𝑆 (the shared and inclusive high-
level structure), while maintaining its presence in𝐶𝑃 (the lower-level

caches). Afterwards, the preserving and concurrent Scope step con-
tinuously fetches S from 𝐶𝑃 , and measures the access latency. As
it overcomes the observer effect, the relevant cache state remains
intact both in 𝐶𝑃 and 𝐶𝑆 after each Scope.

The described cache state is destroyed when the victim accesses
the target address. When this happens, as in Figure 2ii, the newly-
allocated target replaces S, as it is the EVC. Because 𝐶𝑆 is inclusive
of 𝐶𝑃 , the copy of S is also evicted from 𝐶𝑃 . The next Scope will
detect this event through a high access latency to S.

4.3 Instantiation

Cache Hierarchy. For processors with inclusive last-level caches
(LLC), such as the majority of Intel’s desktop CPUs or server CPUs
until 2018, the core-shared and inclusive LLC itself can instantiate
𝐶𝑆 , and the core-private L1 caches can instantiate 𝐶𝑃 . Most Intel
servers since 2018 have non-inclusive LLCs. For such processors,
the CD is shared and inclusive [65], and can hence instantiate 𝐶𝑆 .

Measurement: Scope. On all tested platforms (cf. Section 5), we
found that requests served by 𝐶𝑃 indeed preserve the EVC of 𝐶𝑆 .
The Scope continuously measures the access latency of the scope
line S (=EVC), and terminates as soon as the access time exceeds
a predetermined threshold, indicating the occurrence of the event.
As in Figure 3, Prime+Scope measurements need to detect whether
one cache line is served from L1, vs. from RAM (inclusive) or LLC
(non-inclusive). In comparison, Prime+Probe measurements must
distinguish "𝑊 lines in 𝐶𝑆" from "less than𝑊 lines in 𝐶𝑆".

Preparation: Prime. Prime+Scope is predicated on the existence
and knowledge of a memory access pattern that prepares the cache
state for repeated, single-access measurements. Concretely, we are
looking for Prime patterns, consisting of accesses to𝑊 different
addresses that satisfy the following requirements simultaneously:
R𝐴 . have high eviction rate (> 99.5%)
R𝐵 . install a specific line S as the eviction candidate in 𝐶𝑆
R𝐶 . keep the line S in 𝐶𝑃

Prime+Probe Prime+Scope
event

no event
event S

no event S

Inclusive L1 L1/L2/LLC RAM
Non-Inclusive L1 L1/L2 LLC

Figure 3:Prime+Probemonitors a full set in LLC (incl.) / CD

(non-incl.) and detects eviction to RAM/LLC. Prime+Scope

monitors one line in L1, and detects eviction to RAM/LLC.

Requirement R𝐴 is a traditional requirement for cache contention
attacks; otherwise, the victim access might not evict any of the
attacker’s lines. Requirements R𝐵 and R𝐶 are unique to Prime+
Scope, so we cannot rely on patterns established in prior work. In
particular, we identify the following challenges.

Challenge-LLC: Keeping the EVC in L1. Taken at face value,
requirements R𝐵 and R𝐶 are contradictory. Assume we want to
install line S as the EVC in 𝐶𝑆 . While requirement R𝐵 suggests
to access S less frequently than the other lines in the eviction set,
to ensure it becomes the EVC in 𝐶𝑆 , requirement R𝐶 suggests to
access S more frequently than the others, to ensure it is kept in 𝐶𝑃 .

Challenge-CD: Controlling the EVC. Priorwork [65] observed
that traditional eviction strategies do not perform well on the CD
(R𝐴). This poses a challenge for Prime+Scope, as controlling the
EVC (R𝐵) is strictly harder than only evicting the target.

5 FINDING EFFICIENT PRIME PATTERNS

This section covers the preparation of the cache state such that
subsequent measurements can be performed with a single repeat-
able cache access. Although the Prime duration has limited impact
on the time precision (cf. Section 3.2), we opt to implement the
Prime step with fast and accurate access patterns. To find them, we
propose PrimeTime, an automated gray-box search methodology.

To understand the nomenclature of Prime patterns, and how
PrimeTime finds them, an example pattern is shown in Figure 4
together with its translation into a code snippet. It encodes the
access sequence of lines in the eviction set, along with the stride
(gap) between indices, and the amount of repetitions. This snippet
uses the first line of the eviction set (evset[0]) as the scope line S,
which becomes the EVC after a successful Prime with the snippet.

for (r=0; r<Repeat; r++) {

for (i=0; i<Length; i+= Stride) {

maccess[evset[i+0]]

maccess[evset[i+1]]

maccess[evset[0]]

maccess[evset[i+2]] }}

R4_S2_P01S2

Re
pe
at
:
4

St
ri
de
:
2

Pa
tt
er
n

Length: LLC Ways - Pattern Width + 1
12 - 3 (0->2) + 1

Figure 4: Translation of Prime access patterns into code

snippets. After a successful prime, the scope line S=evset[0]
is the EVC in the LLC, while remaining present in L1.

5

Table 1: Applicability of Prime+Scope to various CPU microarchitectures, along with a top-ranking access pattern as discov-

ered by PrimeTime. Each pattern achieves (median) EVCr of > 99.9% at the indicated (median) cycle cost.

CPU Year Microarchitecture LLC type 𝐶𝑆 𝑊𝐶𝑆
Prime+Scope Prime Access Pattern Cycles

Intel Core i7-9700K 2018 Coffee Lake inclusive LLC 12 ✓ R4_S4_P01SS2301233210 1 332
Intel Core i7-7700K 2017 Kaby Lake inclusive LLC 16 ✓ R2_S4_P01SS2SS301230123 1 255
Intel Core i5-7500 2017 Kaby Lake inclusive LLC 12 ✓ R3_S4_P32SS1SS00123 1 074
Intel Core i7-6700 2015 Skylake inclusive LLC 16 ✓ R3_S4_P01SS2SS301230123 1 694
Intel Core i5-6500 2015 Skylake inclusive LLC 12 ✓ R4_S4_P3SS2SS100123 1 266
Intel Core i7-4790 2013 Haswell inclusive LLC 16 ✓ R3_S4_P3SS2SS100123 1 149
Intel Core i5-4590 2013 Haswell inclusive LLC 12 ✓ R2_S1_P01S2S012 1 221
Intel Core i7-3770 2012 Ivy Bridge inclusive LLC 16 ✓ R3_S4_P3SS2SS1032103210 1 517
Intel Core i5-3450 2012 Ivy Bridge inclusive LLC 12 ✓ R2_S1_P2SS10012 1 216
Intel Core i5-2400 2011 Sandy Bridge inclusive LLC 12 ✓ R5_S1_P0S12012 3 708
Intel Xeon Platinum 8280 2019 CascadeLake-SP non-incl. CD 12 ✓ alternating pointer-chase 2 970
Intel Xeon Platinum 8180 2017 Skylake-SP non-incl. CD 12 ✓ alternating pointer-chase 2 750

5.1 Last-Level Cache (LLC)

Main Idea. The key idea of our solution toChallenge-LLC relies
on property 2 . Assume the scope line S to be the first line in the set
(line 0). Then, the Prime patterns comprise accesses to𝑊 congruent
lines, like other prime strategies, but accesses to lines 1 to𝑊 − 1
are interleaved with accesses to S. Due to its frequent usage, S is
always served from L1, so it keeps its insertion age in the LLC. The
other lines, in contrast, evict each other from L1, and when they are
read from the LLC, their age decreases, making them progressively
younger. As soon as all other lines become younger than S, the
latter is the EVC in the LLC without ever leaving the L1 cache.

Prime Properties. For each candidate Prime pattern, we assess
the eviction rate (EVr), i.e., the fraction of successful evictions of the
target line. More importantly, we also record the eviction candidate

rate (EVCr), i.e., the fraction of attempts where the target line is
evicted, and the line that will be evicted next is the intended S, and
it is still in L1. Finally, we also record the duration, i.e., the number
of cycles to complete the accesses indicated by the pattern.

It is clear that 𝐸𝑉𝐶𝑟 ≤ 𝐸𝑉𝑟 . While the EVr is the success rate of
preparing the cache set for Prime+Probe, the EVCr is the success
rate of preparing S for a continuous Scope. Understandably, prior
efficient patterns for Prime+Probe typically have a low EVCr, be-
cause these patterns are oblivious to the EVC. Hence, good Prime
patterns for Prime+Scope differ from those in prior work.

Methodology of PrimeTime. The high-level description of Prime-
Time is shown in Algorithm 1. It starts with known access pattern
templates, e.g., [24], and mutates them according to given direc-
tives. Mutations consist of repeated access to certain (sub-)patterns,
permuting access orders, or interleaving accesses to S.
To limit execution time, PrimeTime tests patterns in stages, gradu-
ally becoming more restrictive on the patterns that pass to the next
stage, both in EVCr and cycle count. In the first stage, we test each
patternwith 10 000 repetitions, with loosely defined success criteria.
Later stages perform up to a million repetitions, while filtering for
the best-performing patterns. A run for a specific microarchitecture
takes approximately one hour under our configuration, but this can

be scaled in either direction (i.e., speed vs. accuracy). Furthermore,
PrimeTime can be extended to cover a larger search space.

PrimeTime on Various Processor Generations. As shown in Table 1,
PrimeTime is able to construct effective Prime access patterns on
all tested generations of Intel CPUs, though their duration differs
across microarchitectures. For each CPU, we indicate the target
cache and one top-ranking pattern. To select this pattern, we con-
sider EVCr, worst-case durations (99th percentile), andwhether vari-
ants of the pattern are also successful. All patterns shown achieve
>99.9% EVCr. In fact, many patterns exist with similar EVCr.

For Sandy Bridge (2011), the necessary conditions for Prime+
Scope still hold, but the Prime patterns we have found are less
efficient. We hypothesize that this is because this generation of
processors uses the MRU replacement policy in the LLC [2], for
which the insertion age is already young to begin with (and the
PrimeTime strategy works best when the insertion age is old).

Serialization. PrimeTime avoids processor-specific (reverse-) en-
gineering work. As an alternative to PrimeTime, one can obtain
Prime patterns by handcrafting patterns (e.g., [10, 11, 64]) that
leverage on the knowledge of the exact cache replacement policy,
and the interaction between cache levels. In the end, such a strat-
egy may lead to efficient primes with minimal memory accesses.

Algorithm 1 PrimeTime
Output: Prime patterns with high EVCr and low cycle count
1: Patterns← GenerateAccessPatterns()
2: Patterns←Mutate(Patterns, with Repeated Access)
3: Patterns←Mutate(Patterns, with interleaved S Accesses)

. . .

4: Measurements← TestEviction(Patterns, 10 000 times)
5: Patterns← Filter(Patterns, Measurements, Highest EVCr 7 000)
6: Patterns← Filter(Patterns, Measurements, Fastest 5 000)

. . .

7: Measurements← TestEviction(Patterns, 1 000 000 times)
8: Patterns← Filter(Patterns, Measurements, Highest EVCr 150)
9: Patterns← Filter(Patterns, Measurements, Fastest 100)
10: return Patterns

6

However, such handcrafted patterns generally need to serialize
accesses [11, 64] to prevent out-of-order execution from destroy-
ing the intended effects. Such serialization is implemented with
pointer-chasing or memory fences, rendering the Prime patterns
slower. PrimeTime avoids serialization by executing on the target
architecture to incorporate hard-to-predict runtime effects directly.
Still, there may exist handcrafted patterns that are more effective
than the unordered patterns found by PrimeTime. However, the
patterns obtained with PrimeTime are sufficient for Prime+Scope.

5.2 Coherence Directory (CD)

To enable Prime+Scope on the coherence directory, we again need
a suitable Prime pattern. Unfortunately, Yan et al. [65] showed that
achieving a high eviction rate with known eviction patterns is hard,
especially when limited to𝑊 addresses. For instance, they report
that repeated accesses to𝑊 =12 congruent lines require more than
10 iterations to fully prime the CD. This is Challenge-CD.

Slow Prime patterns, consisting of many accesses, are not a fun-
damental problem for Prime+Scope, as the ultimate time resolution
is decoupled from the duration of the Prime (cf. Section 3.2). How-
ever, our PrimeTime tool indicates that such patterns fail to fix the
EVC with high accuracy (R𝐵), prohibiting Prime+Scope.

On the bright side, non-inclusive Intel caches have the advantage
that lines in the CD always reside in one of the lower-level caches,
satisfyingR𝐶 by design. Thus, what remains is to find a pattern that
installs the desired eviction candidate in the CD (R𝐵). We first cover
a slow but universal solution. Then, we discuss our hypothesis for
why traditional patterns do not work well on the CD, leading to a
more efficient Prime pattern that leverages this information.

Fill-Flush-Fill. Prior work has used a fill-flush-fill approach to re-
set and simplify the replacement policy state [2, 11, 59]. Transposed
to the CD, it would first fill the CD set, e.g., through many repe-
titions of an inefficient eviction pattern [65], flush all lines of the
eviction set, and finally load them again in order. We confirm that
such patterns successfully prime the CD set (with EVCr>99.9%),
provided that the initial set filling is successful. However, such pat-
terns are relatively slow. Moreover, the clflush instruction may
not be available in restricted environments (cf. Section 4.1).

CD Replacement Policy. We believe that the poor performance of
traditional eviction patterns on the CD is caused by property 2 .
The reason why this effect is more pronounced for the CD than for
inclusive LLCs is the large associativity of private caches in current
non-inclusive Intel hierarchies, and that lines in the CD are also
cached in L1 and/or L2 [65]. If reading such lines does not influence
the replacement state of the CD, many accesses are required for
every attacker line to become younger than the lines to be evicted.
Thus, for many access patterns, the CD behaves like a first-in-first-
out (FIFO) queue, irrespective of the actual replacement policy.

Based on this hypothesis, a straightforward way to prime the
CD is to access𝑊 congruent lines that are currently not in the CD.
Indeed, we find such an access pattern to simultaneously achieve a
near-perfect EVr and EVCr (the first element of the set being the
scope line S), making it a suitable Prime pattern for Prime+Scope.
On all non-inclusive platforms under consideration, our successive
Primes alternate between two eviction sets of𝑊 addresses. As FIFO

function() {
...
before
operation(secret);
after
...

2

1
before (data or instruction)
after (data or instruction)

(i) Variable-Time Operation

function() {
...
load(array[secret*1024]);
... // other operations
load(array[!secret*1024]);
...

2

1
array[0]
function

(ii) Variable-Time Access

Figure 5: Uses of differential time: 2 - 1

is very sensitive to ordering, and insensitive to repeated accesses,
we enforce serialization by using a pointer-chasing approach [55].

6 CASE STUDIES

Micro-benchmarks. Prime+Scope bypasses the observer effect
of the cache contention side channel, and reduces the cache mea-
surement to a single memory access. Consequently, Prime+Scope
is able to monitor victim behavior with high temporal precision,
even asynchronously, without having to cope with missed accesses.
Section 6.1 quantifies this precision and compares it to other tech-
niques, and Section 6.2 characterizes the influence of noise.

Differential Time. By scopingmultiple sets simultaneously, Prime+
Scope can estimate the temporal separation between two (or more)
events with fine precision. Figure 5 shows two classes of timing
leaks for which Prime+Scope is particularly well-suited.

The first class is that of variable-time operations, where the dura-
tion of an operation depends on a secret value. Such a code pattern
encodes the secret in the time difference between memory accesses
before and after operation, as in Figure 5i. Several attacks exploit
leakage of this kind, e.g., for a secret-dependent number of loop
iterations (e.g., [15]), or non-constant-time arithmetic (e.g., modular
reduction [4, 21]). Cache attacks can only decode the secret if their
precision is sufficient to detect the secret-dependent time difference
of operation. Often, however, the resolution is too low, prompting
the use of performance degradation of the victim [3, 4, 21].

The second class is that of variable-time accesses, where memory
accesses occur at a secret-dependent time (or, as a special case, in
a secret-dependent order [7]). In Figure 5ii, the elements of array
are always accessed, but the time relative to the start of function
depends on a (binary) secret. Again, the attack needs sufficient
precision to detect the secret-dependent time differences.

In this paper, we focus on variable-time access leakage. Section 6.3
demonstrates a high-capacity covert channel that works with such
temporal encoding of the data. In Section 6.4, we show that AES
T-tables, a well-studied cache attack target, also exhibits variable-
time access leakage. Too fine-grained to be properly harnessed by
prior techniques, with Prime+Scope, we exploit it to significantly
reduce the number of traces needed for the attack.

Congruence Detection. The repeatable measurement of a single
cache line is also useful to determine congruence in the target
cache. In Section 6.5, we demonstrate this capability with a simple,
efficient and portable eviction set construction methodology.

7

60 100 200 400 1000 100000.5
0.6
0.7
0.8
0.9
1

Window Size [cycles]

Ac
cu
ra
cy

FF FR PPc PPwA PPwB PS

(i) Precision on LLC (Core i5-7500, Kaby Lake)

100 200 400 1000 100000.5
0.6
0.7
0.8
0.9
1

Window Size [cycles]

Ac
cu
ra
cy

FF FR PPc PPw PS

(ii) Precision on CD (Xeon Platinum 8280, Cascade Lake)

Tech. WL Prepare Measure Resmin Res95
FR ✗ clflush T load T 420 4 350
PPwA ✗ R1_S1_P0 R1_S1_P0 580 2 500
PPwB ✗ R3_S1_P012012 R1_S1_P0 790 4 350
FF ✓ / clflush T 300 300
PPc ✓ / R1_S1_P0 390 390
PS ✓ / load EVC 70 70

(iii) Techniques (LLC). WL denotes windowless; Res𝑚𝑖𝑛 and Res95

denote max. resolution and resolution for 95% accuracy (cycles)

Tech. WL Prepare Measure Resmin Res95
FR ✗ clflush T load T 440 5 000
PPw ✗ simple ptr-chase simple ptr-chase 300 300
FF ✗ clflush T clflush T 430 1 600
PPc ✓ / simple ptr-chase 210 210
PS ✓ / load EVC 80 80

(iv) Techniques (CD). WL denotes windowless; Res𝑚𝑖𝑛 and Res95

denote max. resolution and resolution for 95% accuracy (cycles)

Figure 6: Accuracy and resolution as function of window size

6.1 Temporal Precision

We now quantify the time resolution of Prime+Scope (PS) to detect
cross-core asynchronous events for an inclusive LLC and CD. For
reference, we include themost prominent techniques; Prime+Probe
(PP) for cache contention, i.e., the most comparable technique, and
Flush+Reload (FR) and Flush+Flush (FF) for shared memory.

For Prime+Probe, the experiment includes windowed (PPw)
and windowless (PPc) variants, where we consider two windowed
versions for the LLC (PPwA and PPwB), as in Figure 6iii. For the CD,
we use the accurate eviction patterns as discovered in Section 5.2,
though they were unknown prior to this work.

On our non-inclusive processors, the Flush+Flush side channel
also exists although inverted, i.e., lines present in the hierarchy have
lower flush latency than those that do not. Moreover, the difference
is quite large (200 vs. 330 cycles), unlike the subtle difference on our
inclusive testbed. Prior work [13] reports that flushing an uncached
line on multi-socket Intel systems triggers an access to memory for
cross-socket coherence, which would clarify this behavior.

The measurement thresholds are calibrated dynamically and in-
dividually for every technique, based on timing histograms and the
threshold selection regime with the best results. We note that some
techniques (e.g., Flush+Reload, Prime+Scope) are less sensitive
to the specific threshold value than others (e.g., Prime+Probe).

Methodology. We consider the following micro-benchmark for
detecting asynchronous events. The event to be detected is an access
to a specific cache line, by a process pinned to another core. To
model an asynchronous event, the process first yields the CPU
(sched_yield), before waiting for a randomly sampled number of
nops. Then, the event is triggered with probability 1/2.

We consider the instances listed in Figure 6iii and Figure 6iv.
All instances start from an already-prepared state, using the top-
ranking Prime from Table 1 for both Prime+Probe and Prime+
Scope. The windowless instances (FF, PPc, PS) perform back-to-
back measurements, so the preparation phase does not need to be
repeated (indicated with /). In contrast, the windowed instances
(FR, PPwA, PPwB) comprise a measurement, a preparation phase,
and a waiting period until the end of the window. All instances run
iteratively, and they terminate either when an event is detected, or
when there was no event and the random process has terminated.

This experiment is repeated for 1 000 runs of 10 000 events for
each window size and each technique, and the global accuracy
(true positives and true negatives divided by total) is recorded. We
also record the fundamental maximal resolution (i.e., the minimal
window size that is able to contain one measurement iteration), as
well as the maximal resolution that delivers an accuracy of 95%.

Note that this micro-benchmark serves to quantify, for each
technique, the maximal probing resolution for reliable cross-core
cache event detection. It should not be interpreted as a comparison
of these techniques in a general setting, where more error sources
are at play that are not captured here (e.g., noise). However, a poor
resolution in this experiment implies a poor resolution in practice.

Also, the experiment assumes that the initial cache preparation
is already successfully performed, which may paint an optimistic
picture for windowed techniques. For instance, for the CD, the EVr
of a single unordered probe of𝑊 lines is quite low [65]. Hence,
a windowed Prime+Probe (PPw) has lower accuracy than in this
experiment, due to false negatives incurred by the imperfect EVr, but
its temporal resolution is adequately estimated by this experiment.

8

Results. For both the LLC (Figure 6i) and the CD (Figure 6ii), the
resolution of Prime+Scope can be seen to tower above the other
techniques, i.e., around 70 cycles or 25ns, while correctly detecting
the majority of events (>98%). Figure 6iii and Figure 6iv indicate
the maximal resolution (both fundamentally and for 95% accuracy).

As expected, windowed techniques have poor accuracy for small
window sizes, with many events landing in blind spots (i.e., false
negative errors). This is especially apparent for Flush+Reload,
where small-window instances miss almost all events (cf. [3, 67]).

The resolution for windowless Prime+Probe (PPc) is already
fairly high (390 cycles for the LLC, and 210 cycles for the CD). In
contrast to typical applications of Prime+Probe [31, 37, 55], the
windowless paradigm decouples Prime and Probe. This permits to
optimize the Prime stage for high EVr, and Probe stage for speed.

The inflated time difference for Flush+Flush on the Cascade-
Lake server makes it more accurate than Flush+Reload for all
window sizes. However, the accuracy increases with the window
size, indicating that the Flush measurement on this platform has a
blind spot, i.e., it is not concurrent (cf. Section 3.2).

6.2 Susceptibility to Noise

Like Prime+Probe, Prime+Scope is susceptible to noise resulting
from activity in the targeted cache set, other than the event which
is to be monitored. This limitation is fundamental to the cache
contention leakage mechanism. It is natural to ask whether the
more precise Prime patterns for Prime+Scope make it more fragile
in the presence of noise. We explore it in the following experiment.

We consider two threads pinned to different cores of an Intel
Core i7-7700K (Kaby Lake, 16 ways), where one thread monitors the
other’s memory accesses under different levels of noise. The stress
tool is used to generate heavy memory load on one or more other
cores (e.g., as in [39]). One thread accesses a predetermined address
periodically (every 10 000 cycles), as ground truth, while the other
thread continuously monitors the cache set for events, and records
the timestamps at which the events are detected. Timestamps are
obtained using the CPU’s time stamp counter, which is synchro-
nized across cores. After execution, the collected timestamps are
analyzed to evaluate the detection accuracy of the techniques.

In the ideal case, only one event is detected in each time slot,
being the ground-truth periodic access. In the experiment, three
cases are distinguished: correct when only one event is detected, and
it was detected right after the event occurred;misswhen the ground-
truth event was not detected in the time slot (false-negative error);
and multi when events were detected that did not correspond to
the ground-truth access (false-positive error). If a time slot contains
both error types, which is uncommon, it is classified as multi.

Prime+Scope (PS) is compared with two windowless Prime+
Probe instances. As indicated in Figure 7, the first one (PP𝑃𝑆) in-
herits the Prime access pattern of Prime+Scope. The second one
(PP𝐶𝑆𝑇) uses a custom Prime+Probe pattern, which is also obtained
with PrimeTime, but optimized for EVr instead of EVCr.

For the Prime+Probe instances, the indicated Prime is repeated
continuously and serves both as preparation (where duration is
the number of cycles needed to prepare the cache after an event)
and measurement (where precision is the number of cycles between
successive measurements in the absence of an event). Note that

Method Stress Correct Miss Multi

PS
0

98.24 1.44 0.32

PP𝑃𝑆 99.42 0.45 0.12

PP𝐶𝑆𝑇 98.72 1.15 0.13

PS
1

79.71 2.35 17.94

PP𝑃𝑆 83.83 0.54 15.63

PP𝐶𝑆𝑇 81.74 0.56 17.70

PS
5

78.38 2.42 19.20

PP𝑃𝑆 82.80 0.68 16.51

PP𝐶𝑆𝑇 81.94 0.00 18.06

Figure 7: Distribution of time slots along correct, miss and

multi categories for Prime+Scope and Prime+Probe (aver-

ages over 200 runs of more than 25 000 time slots). Stress in-

dicates the amount of stress workers, pinned to different

cores, that are active in the background. The properties of

the Prime patterns are as follows:

Pattern EVr EVCr Duration Precision

PS R3_S4_P01SS2SS301230123 100% 99.9% 1810 70
PP𝑃𝑆 R2_S4_P01SS2SS301230123 100% 99.9% 1255 1170
PP𝐶𝑆𝑇 R2_S1_P01 100% NA 1190 700

PP𝑃𝑆 performs much more accesses than PP𝐶𝑆𝑇 , which is almost
completely hidden in the preparation stage in the shade of cache
misses, but is clearly visible in the measurement precision. As in
Figure 1ii-H, the Prime right after detection of an event is ignored,
as its execution time may still be affected by that event.

A naive implementation of Prime+Scope performs the Prime
just once for every detected event. However, suppose that the Prime
is unsuccessful in fixing the EVC, e.g., due to noise. This will blind
the following Scope operations, as they may be fast even if some
elements of the cache set have been evicted. To overcome this issue,
the Prime step is repeated when no events were detected within a
chosen period (in this experiment, roughly 12 000 cycles).

Results. For each technique and noise level, Figure 7 indicates
the distribution of time slots along correct, miss and multi rates.
This micro-benchmark provides a rough indication of how noise
translates to false-positive and false-negative errors for the different
windowless techniques. We can draw the following conclusions:
- The miss rates of Prime+Scope are slightly (a few p.p.) higher
than Prime+Probe. The main cause of such false-negative errors
are accesses during the preparation phase of the attack, which
may result in an imperfectly prepared set [11]. Hence, the ob-
served behavior is clarified by imperfect preparation affecting
the EVCr slightly more than the EVr. If high noise levels are to
be expected, Prime+Scope fares well with an upwards correction
of the Prime repetitions compared to the output of PrimeTime
(e.g., as in this experiment, where R2_*→ R3_*).

- In terms of multi rates, all instances are comparable. The main
cause of such false-positive errors is noise during the measure-
ment phase, evicting the EVC. As this leads to high access laten-
cies for both Probe and Scope, this source of errors is expected
to affect Prime+Scope and Prime+Probe equally.

9

Figure 8: Covert Channel Operation (𝑚 = 3 bits per symbol).

6.3 Cross-Core Covert Channel

To show that Prime+Scope can discern fine-grained temporal cache
activity, we build a high-capacity cross-core covert channel based
on variable-time access leakage (cf. Figure 5ii). It temporally encodes
𝑚-bit symbols by performing a memory access in one of 2𝑚 slots,
where slots may be as short as 80 processor cycles.

As a representative sample, we implement it on the LLC of a Kaby
Lake processor, and on the CD of CascadeLake-SP. For our proof-of-
concept implementation, we assume a synchronized transmitter and
receiver that have agreed on a contention set (e.g., as in [43, 44, 65]).

Figure 8 visualizes the working mechanism of the covert channel,
as well as its defining parameters (duration of preparation stage,
transmission slots, and transmitter-receiver offset). First, the re-
ceiver primes the set. Then, the transmitter sends an𝑚-bit symbol
𝑀 by accessing a congruent line in slot number 𝑖 = 𝑀 . At the same
time, the receiver scopes the set every SLOT cycles, decoding𝑀 as
the slot number in which the scope line S is evicted.

Optimizations. We perform a few modifications to improve the
channel bandwidth. Instead of the canonical encoding, we encode
the bitstream into𝑚-bit symbols with reflected binary Gray codes to
ensure that off-by-one symbol errors only lead to single-bit errors.

For the LLC channel, the receiver uses the Prime patterns of
Section 5.1. We find that if the transmitter flushes the line right
after accessing it, it slightly speeds up the prime for the receiver.

For the CD channel, the Prime stages consist of alternating
pointer chases (cf. Section 5.2). To amortize the latency arising
from serialization, four sets are primed simultaneously with their
accesses interleaved (e.g., as in [16]). After the combined Prime,
there are four rounds of 2𝑚 slots, where each round encodes𝑚 bits.

Evaluation. Figure 9 gives capacity and error rate as a function
of bandwidth, and summarizes the parameters for which the LLC-
and CD-based channels obtain peak capacity. Respectively, the
capacities are 3.5Mbps and 3.1Mbps, which is much higher than
Prime+Probe on the LLC (e.g., 500 Kbps at 1% bit error rate [25]).
Furthermore, they are in the same order of magnitude as state-of-
the-art stateless channels without shared memory, such as Pessl
et al. [44] (DRAM row buffer contention, 2.1Mbps capacity) and
Paccagnella et al. [43] (LLC ring contention, 4.1Mbps capacity).

To our knowledge, the only other covert channel using the CD
is due to Yan et al. [65], with a bandwidth of 0.2Mbps (error rate
not reported). The order-of-magnitude capacity improvement of
our channel stems from both a fast and efficient Prime pattern (cf.
Section 5.2), and the precision of Prime+Scope (cf. Section 6.1).

As the goal is to characterize the temporal precision of Prime+
Scope, we limit the study of this covert channel to synchronized
parties on idle systems. In practice, further engineering challenges
need to be overcome (e.g., as undertaken in [37–39]).

1.5 2 2.5 3 3.5 4 4.5 51
2
3
4

Bandwidth (Mbps)

Ca
pa
ci
ty

(M
bp

s)

Capacity (KBL) Capacity (CXL)

0
0.05
0.1
0.15
0.2

Er
ro
rR

at
e

Bit Error Rate (KBL) Bit Error Rate (CXL)

Figure 9: Covert Channel Capacities and error rates for the

Kaby Lake (KBL) and CascadeLake-SP (CXL) platform. For

the peak capacities, the configuration in the following table

are used, where PREPARE, OFFSET and SLOT are in cycles.

Platform 𝐶𝑆 𝑚 Capacity PREPARE OFFSET SLOT

Core i7-7500 (KBL) LLC 4 3.5 Mbps 1 400 90 100
Xeon Pl. 8280 (CXL) CD 3 3.1 Mbps 4 750 125 100

6.4 Side-Channel Attack on AES

We now revisit the seminal first-round known-plaintext attack on
the T-table implementation of AES [42], a standard benchmark for
cache attack techniques (e.g., [18, 25, 57]). The time precision of
Prime+Scope allows a novel attack technique against AES, based
on variable-access time leakage (cf. Figure 5ii), rather than tradi-
tional access leakage. As it can learn more information from each
encryption, much fewer traces are needed to extract the secret.
Although a windowless Prime+Probe can also absorb some of this
information, Prime+Scope requires 10-70x fewer traces. We first
give a high-level outline of the traditional attack (for details, refer
to [42, 55]). Like prior work, we attack OpenSSL 1.0.1e (or similar).

Traditional Attack. The implementation features four precom-
puted tables 𝑇𝑒 𝑗 , of 16 cache lines each. The attacker monitors
accesses to such table lines 𝑇𝑒 𝑗 [𝑀] which, on CPUs with 64-byte
cache lines, leak the upper four bits (nibble) of every key byte 𝑘𝑖 .
We implement this attack with Prime+Probe (for comparison) and
Flush+Reload (for reference), where the attacker prepares the
cache, triggers an encryption with known plaintext, and measures
afterwards. For plaintexts where ⌈𝑝𝑖 ⌉4 = ⌈𝑘𝑖 ⌉4 ⊕ 𝑀 , cache line
𝑇𝑒𝑖 mod4 [𝑀] is accessed in the first round, and hence, in 100% of
encryptions. For other 𝑝𝑖 , it is accessed in 92.5% of encryptions, so
each monitored𝑇𝑒 𝑗 [𝑀] carries information in 7.5% of encryptions.

Variable-Time Access: Prime+Scope. Consider the code snippet in
Figure 10. Indeed, not only the access to a table encodes information,
but also the encryption round in which it happens. We now show
that, through its time precision, Prime+Scope is able to capture such

void AES_encrypt(...) {
... // s0-s3 contain p_i xor k_i
// round 1:
t0 = Te0[s0>>24] ^ Te1[(s1>>16) & 0xff]

^ Te2[(s2>>8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];
t1 = ... ; t2 = ...; t3 = ...; // similar to t0
... // rounds 2-10 (similar to round 1)

2

1 AES_encrypt

Te0/Te1/Te2/Te3

Figure 10: Variable-time access leakage for AES

10

1 2 3 4 5

100

1,000

10,000

100,000

Table entries monitored

En
cr
yp

tio
ns

PP FR
PS PPv2

Figure 11: Median encryptions for AES T-tables (bars in-

dicate 10-90th percentiles). Comparison of Prime+Scope

(PS) with traditional Prime+Probe (PP) and Flush+Reload

(FR), as well as differential-time Prime+Probe (PPv2).

leakage. Information is obtained through differential time between
the start of the AES_encrypt function and one or more table entries.

We use the cache attack as an oracle for accesses to table entries
during the first AES round. We spin up a thread for each monitored
line (including the first instruction cache line of AES_encrypt). The
adversary triggers encryptions, and each thread records the times-
tamp at which the access is detected (if any) for the monitored table
entry. Then, the differential times are used to score the key nibble
hypotheses. The larger the differential time, the larger the penalty
for the key nibble, as the probability is lower that it corresponds to
a first-round access. For a table access in the first round, we observe
the differential time to be around 200-300 cycles.

An advantage of this attack is that every trace carries information
for each monitored table entry, as opposed to only 7.5% for the
traditional first-round attack. Note that a single-threaded Prime+
Scope can also record differential times, but the temporal resolution
decreases linearly with the number of lines scoped in one thread.

Variable-Time Access: Prime+Probe? For comparison, we explore
whether Prime+Probe can also learn from the differential time. To
capture the maximal performance of Prime+Probe, we consider
an optimal, windowless configuration; the Prime is the same as for
Prime+Scope, and the Probe is the simple, unordered traversal of
the set (pattern R1_S1_P0). According to Figure 6iii), we expect a
precision of approx. 400 cycles (cf. 70 cycles for Prime+Scope).

Results. Figure 11 presents the results on the LLC of an Intel Core
i7-7700K (Kaby Lake, 16 ways). It shows the number of encryptions
needed to mount the full first-round attack, which recovers 64 of
the 128 key bits. We consider the key nibble found as soon as the
hypothesis converges (i.e., it reaches the correct value and does not
diverge from it). We perform 1 000 iterations and indicate the me-
dian and 10th and 90th percentiles to convey the variance. Note that
these results are obtained without degrading victim performance
(other than indirectly through the cache sets that are monitored).

Prime+Scope retrieves the secret information with fewer traces
(between 5-25x) than the traditional Prime+Probe. The differential-
time Prime+Probe is also able to capture some of the temporal
information, but again more slowly, with more traces than Prime+
Scope (10-70x). When only a single table entry is monitored in
every encryption, we find that it fails to recover the secret even

with as many as 100 000 traces, which may indicate that the timing
differences are too small to be distinguished by Prime+Probe.

6.5 Finding Congruent Addresses

Cache contention attacks require the adversary to find eviction
sets, i.e., sets of congruent addresses in the target cache. This prac-
tical challenge has been investigated thoroughly [18, 31, 37, 60, 65].
However, the principles underlying Prime+Scope enable an effi-
cient congruence test, resulting in a faster and simpler routine that,
counter-intuitively, requires fewer platform-specific parameters.

Algorithm: LLC. The foundation of the proposed LLC eviction
set construction routine is given in Algorithm 2. It repeatedly mea-
sures the access latency of the TARGET address and, between each
measurement, accesses a guess. As TARGET is continuously accessed,
it is always served from the L1 cache, which does not influence its
LLC replacement state. Guesses that turn out to be congruent with
the TARGET are installed in the LLC, and each time this happens,
the EVC in the LLC changes. After enough congruent guesses, the
TARGET becomes the EVC. The next congruent guess then evicts
TARGET from the LLC and, due to the inclusion property, also from
the private caches. Therefore, the next access to TARGET is slow,
indicating the congruence of the latest guess. The attacker repeats
this procedure until she has obtained enough congruent addresses.

To speed up the routine, between lines 4 and 5 in Algorithm 2, we
access already-obtained congruent addresses to accelerate TARGET
becoming the LLC eviction candidate. Thus, the number of inner-
loop iterations is expected to decrease as the algorithm proceeds.

To increase the robustness, we test whether the resulting set
successfully evicts the TARGET. If not, an extra address is found, and
the test is repeated. The number of failures until the test succeeds re-
veals the number of false positives in the set, which can be removed
through a short reduction phase, akin to prior work [37, 60, 65].

The algorithm is identical for huge and small virtual memory
pages, but the availability of huge pages speeds up the runtime
significantly, as the guesses are more likely to be congruent due to
the increased control over physical address bits [37, 60].

Algorithm: CD. On non-inclusive Intel caches, the set index map-
ping for the LLC and CD is identical. Hence, eviction sets con-
structed for one may be used for the other. Finding congruent
addresses through contention on the CD is challenging, as congru-
ence in the CD implies congruence in L2 [65], and TARGET may be

Algorithm 2 Eviction Set Construction
Input: TARGET: address for which an LLC eviction set is desired
Output: ES: eviction set

1: ES← empty list
2: length← 0
3: while length < LLC_WAYS do

4: access(TARGET)
5: do

6: GUESS← a line possibly congruent to the TARGET
7: access(GUESS)
8: while access(TARGET) is fast
9: ES[length++]← GUESS
10: end while

11

Table 2: Runtime (median) and accuracy (%) for eviction set

construction (1 000 runs for randomly selected targets)

Processor Vila et al. [60] Ours
Cache Huge∗ Small∗ Huge Small
Skylake 165.2 ms 316.3 ms 0.25 ms 2.80 ms
12 Way LLC 99% 100% 99% 99%
Skylake 113.2 ms 643.8 ms 0.55 ms 4.03 ms
16 Way LLC 98% 100% 96% 100%
Skylake-SP NA NA 3.15 ms 35.40 ms
12 Way CD NA NA 100% 93%

∗ Initial set size for 12
16 Way LLC is 65

90 for huge pages, 3500
4000 for small.

evicted due to contention on L2, leading to false positives. Thus,
like prior work [65], we perform the construction on the LLC.

The routine is similar to in Algorithm 2. However, recall that
the LLC is non-inclusive, so the memory accesses on lines 4 and
7 do not guarantee the installation of the TARGET and the GUESSes
in the LLC. We replace them with joint accesses by the attacker
thread and a helper thread on another CPU core, as we observed
that accesses from two cores place a copy of the line into the LLC1.

Platforms. We tested the eviction set construction on all the ma-
chines in Table 1, as we had to obtain eviction sets for PrimeTime.
To compare with other work, we perform a detailed comparison
on the Skylake microarchitectures in Table 2. Apart from the dif-
ferences for inclusive and non-inclusive LLCs and a parameter for
LLC associativity, it requires no adaptation to the processor.

Comparison. Vila et al. [60] study eviction set construction in
detail, and propose a linear-time algorithm that improves over the
quadratic-time baseline [37]. These routines iteratively remove one
or more lines from a big initial set, measuring whether the residual
set still evicts the target. In contrast, Algorithm 2 starts from an
empty set, and adds congruent lines to it. It overcomes practical
problems identified by previous works, such as the dependence on
replacement policies (and their adaptivity) [60], TLB thrashing [20],
and hardware prefetchers [55]. Similar to prior techniques [37, 60,
65], it does not require knowledge of the slicing function.

Because our implementation does not require any preparation
steps, such as organizing the memory space in a linked list, or
selecting a suitable starting set, we take into account the total exe-
cution time of the construction routine, which includes the time
spent for failed preparation steps in addition to the last successful
reduction step. As shown in Table 2, our implementation executes
up to 660x faster than the one by Vila et al. [60], while achieving
the same success rate (where success is defined as a set of𝑊 ad-
dresses that consistently evicts the target). Furthermore, the default
configuration is adequate for successful execution on all tested Intel
processors, while containing only a few configuration parameters.

For non-inclusive caches, only the initial study by Yan et al. [65]
describes how to find LLC/CD eviction sets. They adapt the congru-
ence test of earlier work [37] to overcome the challenges provided
by non-inclusive LLCs. Compared to ours, their routine has the
1For more information, we refer the reader to
https://www.github.com/KULeuven-COSIC/PRIME-SCOPE/evsets.

advantage of being single-threaded. As performance metrics are
not provided in [65], we are unable to directly compare our work
with theirs. However, it has quadratic complexity, and is so far un-
successful when huge pages are not available. Even if their routine
is adapted to linear time (e.g., [60]), we expect our algorithm to
outperform it, in accordance with the findings for inclusive caches.

7 RELATEDWORK

7.1 Classification of Attack Techniques

Complementing the quantitative study in Section 6, Table 3 posi-
tions Prime+Scope with respect to existing cross-core cache attack
techniques on the basis of prerequisites and features.

Prerequisites. The most basic requirement is co-tenancy, where
the attacker can run unprivileged code (native or otherwise) on the
same physical machine as a victim. As long as both parties share at
least one cache level, an attacker can measure contention on shared
cache resources (as is done for Prime+Probe and Prime+Scope).

Some techniques are predicated on additional capabilities, such
as shared memory with the victim, the presence of a clflush in-
struction, or special processor features like Intel’s TSX. These extra
capabilities can increase the power of the technique, e.g., in terms
of spatial resolution or reliability. However, the additional prerequi-
sites limit the applicability of these techniques. For instance, shared
memory is discouraged in multi-tenant clouds, and clflush may
not be available to code that is not running natively on the system
(e.g., in the browser). Intel TSX is not available on all Intel CPUs and,
for those where it is available, Intel has added support to disable
it [30] in response to recent transient execution attacks [50, 58].

Features. The most relevant features to this work are whether a
technique can be instantiated in a windowless paradigm, and the
number of cache accesses for each measurement.

In terms of spatial granularity, techniques based on shared me-
mory can infer accesses to specific cache lines, whereas cache con-
tention attacks are fundamentally limited to set-granularity. Prime+
Scope belongs to the latter category. Table 3 also indicates which
techniques have been shown on CDs of non-inclusive LLCs [65].

Measuring multiple events enriches the information content of
the channel and is an essential requirement to record differential
times (cf. Section 6). Prime+Abort cannot monitor multiple events
while maintaining the ability to distinguish between them [18].
Other techniques can do so, but may have to take the influence of
spatial hardware prefetching into account [26, 61, 66].

Other Properties. Some techniques are tailored to overcome spe-
cific system-level constraints. Cache occupancy attacks [53] forego
the search for congruent addresses and instead measure contention
on a cache-sized buffer. This makes them amenable for deployment
in (very) restricted environments [52], at the cost of all spatial gran-
ularity and significant time precision. Some techniques offer stealth
against runtime detection [11, 25], or bypass software-based coun-
termeasures with indirect cache accesses [57]. Exploring Prime+
Scope in these system models is beyond the scope of this work.

12

Table 3: Classification of cross-core cache attack techniques in terms of prerequisites and features

Attack

Technique

Mechanism Prerequisites Features

Leakage
Source

Spatial
Granularity

No Shared
Mem.

No
clflush

No
TSX

Window-
less

Measure
Size

Multi-
Target

Shown
on CD

Flush+Reload [67] load latency line ✗ ✗ ✓ ✗ 1✓ ✓ ✓
Flush+Flush [25] load latency line ✗ ✗ ✓ ✓ 1✓ ✓ ✓
Evict+Reload [26] load latency line ✗ ✓ ✓ ✗ 1✓ ✓ ✓
Reload+Refresh [11] repl. state line ✗ ✗ ✓ ✗ 2✓ ✓ ✗

Prime+Probe [31, 37] contention set ✓ ✓ ✓ ✓ 𝑊✗ ✓ ✓
Occupancy [53] contention none ✓ ✓ ✓ ✗ huge✗ ✗ ✓
Prime+Abort [18] TSX abort set ✓ ✓ ✗ ✓ ∅✓ ✗ ✗

Prime+Scope contention set ✓ ✓ ✓ ✓ 1✓ ✓ ✓

7.2 Cache Attacks and Replacement Policies

Cache replacement policies were long perceived as obstacles, lead-
ing to techniques that minimize their influence (e.g., double pointer-
chasing [55] or black-box eviction strategies [24]). However, en-
abled by reverse-engineering advances [1, 2, 11, 59], some works
use replacement properties to the advantage of the attacker.

Same-Core. Xiong and Szefer [64] use the PLRU policy of the L1
cache to leak information between processes through LRU states.
Recently, Röttger and Janc [48] use it to amplify the time difference
between presence and absence of a speculative memory access.

Cross-Core. Reload+Refresh [11] detects accesses to a shared
address by monitoring changes in the EVC. In this context, our
efficient Prime patterns may be useful to prepare the EVC. Wang
et al. [61] probe the L2 EVC to limit the impact of the aggressive
hardware prefetcher on low-end, in-order Intel CPUs. Their Prime
pattern consists of 2𝑊 ordered accesses (all cache misses), making
it comparatively slow. Briongos et al. [10] detect the start of a victim
routine and exploit LLC replacement to evict prefetched lines at the
right time. As Prime+Probe lacks the required precision, they rely
on Prime+Abort for detection. Future work should investigate the
use of Prime+Scope to remove the dependency on Intel TSX.

To enable Rowhammer attacks without flushing, Gruss et al. [24]
find efficient eviction strategies for unknown replacement policies.
Aweke et al. [5] develop a pattern predicated on the Sandy Bridge
MRU policy, which De Ridder et al. [16] modernize and improve for
browser-based Rowhammer in the presence of DRAM mitigations.

8 LIMITATIONS AND COUNTERMEASURES

Requirements. Prime+Scope does not work on processors for
which the key properties (cf. Section 4) do not hold. For instance, it
fails when the shared structure 𝐶𝑆 has a random replacement pol-
icy (as it eliminates predictability of the EVC), or if the lower-level
caches do not act as a filter for 𝐶𝑆 (as it eliminates repeatability of
the measurement). We believe these two properties are the only
anchor points for the deployment of countermeasures to reduce
Prime+Scope to Prime+Probe. However, invalidating these prop-
erties may adversely affect multi-level cache performance.

Leakage Types. As demonstrated in Section 6, Prime+Scope is
able to extract information from fine-grained timing leaks. However,
if time differences are more coarse-grained (e.g., RSA square-and-
multiply [37, 67]), the increased precision of Prime+Scope does

not directly lead to a more efficient attack. Still, we note that the
windowless nature of Prime+Scope eliminates false-negative errors
due to overlap between measurement and event, which may help to
reduce the number of required observations to retrieve the secret.

High-Frequency Events. Recall that for Prime+Scope (and Prime+
Abort and Prime+Probe), even forwindowless instances, the cache
state needs to be prepared after every detected event. If the event
rate is very high, i.e., when the temporal separation of accesses
to the same address is in the order of the Prime duration, the
preparation step becomes dominant for the time precision. We note
that, although Prime+Scope places more demands on cache state
preparation than its counterparts, the Prime patterns obtained with
PrimeTime are still fairly competitive, with most of them in the
range of 1000-1300 cycles (cf. Table 1).

Generic Countermeasures. Flush+Reload and Flush+Flush can
be thwarted by disallowing shared memory across security bound-
aries, but countermeasures tomitigate the cache contention channel
are far more invasive. However, in recent years, this defensive av-
enue has attracted attention in the research community. The main
lines of work are based on isolation, i.e., partitioning the cache
along isolated portions (e.g., [6, 14, 17, 19, 35]), or randomization,
i.e., obfuscating interference by modifying the set index mapping
(e.g., [36, 45, 46, 49, 54, 62, 63]). By strengthening cache contention
attacks, our work motivates further research in this direction.

9 CONCLUSION

This paper introduced Prime+Scope, a high-resolution primitive to
measure contention on shared cache resources. It can target last-
level caches and directories alike, and we found it to apply to all
tested Intel processors of the last decade. Roughly speaking, Prime+
Scope is a high-resolution successor to Prime+Probe, assuming the
same attacker capabilities that make the latter so widely applicable.
The fast and repeatable Scope measurement essentially optimizes
the resolution of cache contention attacks, delivering a cross-core
time precision that even flush-based techniques cannot provide.

We believe that Prime+Scope is a valuable addition to the mi-
croarchitectural attack toolbox. We quantitatively evaluated its
properties, and illustrated them with a high-bandwidth covert chan-
nel, a new fine-grained attack on AES T-tables, and a simple, effi-
cient, and portable routine to construct eviction sets.

13

ACKNOWLEDGMENTS

We thank the anonymous CCS 2021 reviewers, as well as Frank
Piessens and Márton Bognár, for their valuable feedback. This re-
search is partially funded by the European Research Council (ERC -
#695305) and the Flemish Government through the FWO project
TRAPS. It was also supported by the CyberSecurity Research Flan-
ders (#VR20192203). Additional funding was provided by a gener-
ous gift from Intel. Antoon Purnal is supported by a grant of the
Research Foundation - Flanders (FWO).

REFERENCES

[1] Andreas Abel and Jan Reineke. 2013. Measurement-based Modeling of the Cache
Replacement Policy. In IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS).
[2] Andreas Abel and Jan Reineke. 2020. nanoBench: a Low-overhead Tool for

Running Microbenchmarks on x86 Systems. In IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS).
[3] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van de Pol, and Yuval

Yarom. 2016. Amplifying Side Channels Through Performance Degradation. In
Annual Conference on Computer Security Applications (ACSAC).

[4] Diego F Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and
Yuval Yarom. 2020. Ladderleak: Breaking ECDSA With Less Than One Bit of
Nonce Leakage. In ACM SIGSAC Conference on Computer and Communications

Security (CCS).
[5] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,

Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL: Software-based
Protection Against Next-generation Rowhammer Attacks. ASPLOS (2016).

[6] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. {CURE}: A Security
Architecture with CUstomizable and Resilient Enclaves. In USENIX Security

Symposium.
[7] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Zhao,

Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, AdamMorrison,
Frank Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Abhishek Basak,
and Alaa Alameldeen. 2021. Speculative Interference Attacks: Breaking Invisible
Speculation Schemes. ASPLOS (2021).

[8] Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom. 2014. “Ooh
Aah... Just a Little Bit”: A Small Amount of Side Channel can go a Long Way. In
Cryptographic Hardware and Embedded Systems (CHES).

[9] Daniel J Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink,
Nadia Heninger, Tanja Lange, Christine van Vredendaal, and Yuval Yarom. 2017.
Sliding Right into Disaster: Left-to-right Sliding Windows Leak. In Cryptographic

Hardware and Embedded Systems (CHES).
[10] Samira Briongos, Ida Bruhns, Pedro Malagón, Thomas Eisenbarth, and José M.

Moya. 2021. Aim, Wait, Shoot: How the CACHESNIPER Technique Improves
Unprivileged Cache Attacks. In IEEE European Symposium on Security and Privacy

(EuroS&P).
[11] Samira Briongos, Pedro Malagon, Jose M. Moya, and Thomas Eisenbarth. 2020.

RELOAD+REFRESH: Abusing Cache Replacement Policies to Perform Stealthy
Cache Attacks. In USENIX Security Symposium.

[12] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. 2016.
Flush, Gauss, and Reload–a Cache Attack on the BLISS Lattice-based Signature
Scheme. In Cryptographic Hardware and Embedded Systems (CHES).

[13] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec
Wolman, and Onur Mutlu. 2020. Are We Susceptible to Rowhammer? An End-
to-End Methodology for Cloud Providers. In IEEE Symposium on Security and

Privacy (S&P).
[14] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal Hard-

ware Extensions for Strong Software Isolation. In USENIX Security Symposium.
[15] Luca De Feo, Bertram Poettering, and Alessandro Sorniotti. 2021. On the (in)

security of ElGamal in OpenPGP. In ACM SIGSAC Conference on Computer and

Communications Security (CCS).
[16] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida,

and Kaveh Razavi. 2021. SMASH: Synchronized Many-sided Rowhammer Attacks
from JavaScript. In USENIX Security Symposium.

[17] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
USENIX Security Symposium.

[18] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen. 2017.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In
USENIX Security Symposium.

[19] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-Monopolizable Caches: Low-Complexity Mitigation of

Cache Side Channel Attacks. ACM Transactions on Architecture and Code Opti-

mization (TACO) (2012).
[20] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-by

Key-extraction Cache Attacks from Portable Code. In Applied Cryptography and

Network Security.
[21] Daniel Genkin, Luke Valenta, and Yuval Yarom. 2017. May the Fourth beWith You:

A Microarchitectural Side Channel Attack on Several Real-world Applications
of Curve25519. In ACM SIGSAC Conference on Computer and Communications

Security (CCS).
[22] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano

Giuffrida. 2020. Speculative Probing: Hacking Blind in the Spectre Era. In ACM

SIGSAC Conference on Computer and Communications Security (CCS).
[23] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and

Manuel Costa. 2017. Strong and Efficient Cache Side-channel Protection Using
Hardware Transactional Memory. In USENIX Security Symposium.

[24] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In Detection of Intrusions

and Malware, and Vulnerability Assessment (DIMVA).
[25] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: A Fast and Stealthy Cache Attack. In Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA).
[26] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template

Attacks: Automating Attacks on Inclusive Last-level Caches. In USENIX Security

Symposium.
[27] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games–

Bringing Access-based Cache Attacks on AES to Practice. In IEEE Symposium on

Security and Privacy (S&P).
[28] Berk Gülmezoglu, Mehmet Sinan Inci, Gorka Irazoqui Apecechea, Thomas Eisen-

barth, and Berk Sunar. 2015. A Faster and More Realistic Flush+Reload Attack
on AES. In Constructive Side-Channel Analysis and Secure Design (COSADE).

[29] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In IEEE Symposium on Security and

Privacy (S&P).
[30] Intel. 2019. Intel Transactional Synchronization Extensions (Intel TSX) Asyn-

chronous Abort. https://software.intel.com/security-software-guidance/deep-
dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-
asynchronous-abort.

[31] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache
Attack ThatWorks Across Cores and Defies VM Sandboxing – and Its Application
to AES. In IEEE Symposium on Security and Privacy (S&P).

[32] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.
Wait a minute! A fast, Cross-VM attack on AES. In Research in Attacks, Intrusions,

and Defenses (RAID).
[33] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos,

and Kaveh Razavi. 2020. NetCAT: Practical Cache Attacks From the Network. In
IEEE Symposium on Security and Privacy (S&P).

[34] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX

Security Symposium.
[35] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B Lee. 2016. Catalyst: Defeating Last-level Cache Side Channel Attacks
in Cloud Computing. In IEEE International Symposium on High Performance

Computer Architecture (HPCA).
[36] Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In IEEE/ACM

International Symposium on Microarchitecture (MICRO).
[37] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks Are Practical. In IEEE Symposium on Security

and Privacy (S&P).
[38] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.

2015. C5: Cross-Cores Cache Covert Channel. In Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA).
[39] Clémentine Maurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,

Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello from the
Other Side: SSH over Robust Cache Covert Channels in the Cloud. In Network

and Distributed System Security Symposium (NDSS).
[40] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:

How SGX Amplifies the Power of Cache Attacks. In Cryptographic Hardware and

Embedded Systems (CHES).
[41] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and Their Implications. In ACM SIGSAC Conference on Computer and Communi-

cations Security (CCS).
[42] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In Cryptographers’ Track at the RSA Conference

on Topics in Cryptology (CT-RSA).
[43] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. 2021. Lord of

the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical. In USENIX Security Symposium.

14

https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort

[44] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-cpu Attacks.
In USENIX Security Symposium.

[45] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-based Cache Attacks
via Encrypted-address and Remapping. In IEEE/ACM International Symposium on

Microarchitecture (MICRO).
[46] Moinuddin K. Qureshi. 2019. New Attacks and Defense for Encrypted-address

Cache. In International Symposium on Computer Architecture (ISCA).
[47] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,

You, Get off of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds. In ACM SIGSAC Conference on Computer and Communications Security

(CCS).
[48] Stephen Röttger and Artur Janc. 2021. A Spectre proof-of-concept for a

Spectre-proof web. https://github.com/google/security-research-pocs/tree/
master/spectre.js.

[49] Gururaj Saileshwar and Moinuddin Qureshi. 2021. MIRAGE: Mitigating Conflict-
Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Secu-

rity Symposium.
[50] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-

lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS).
[51] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan

Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

[52] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses. In USENIX Security Symposium.

[53] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through the
Cache Occupancy Channel. In USENIX Security Symposium.

[54] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. 2020. PhantomCache: Obfuscating
Cache Conflicts with Localized Randomization. InNetwork and Distributed System
Security Symposium (NDSS).

[55] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. Journal of Cryptology (2010).

[56] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets Without Page Faults: Stealthy Page Table-
based Attacks on Enclaved Execution. In USENIX Security Symposium.

[57] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018.
Malicious management unit: Why stopping cache attacks in software is harder
than you think. In USENIX Security Symposium.

[58] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In IEEE Symposium on Security and Privacy (S&P).

[59] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. 2020. CacheQuery:
Learning replacement policies from hardware caches. In ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation.
[60] Pepe Vila, Boris Köpf, and José F. Morales. 2019. Theory and Practice of Finding

Eviction Sets. In IEEE Symposium on Security and Privacy (S&P).
[61] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Krishna-

murthy. 2019. Papp: Prefetcher-aware Prime and Probe Side-channel Attack. In
Design Automation Conference (DAC).

[62] Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In International Symposium on

Computer Architecture (ISCA).
[63] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel

Gruss, and Stefan Mangard. 2019. SCATTERCACHE: Thwarting Cache Attacks
via Cache Set Randomization. In USENIX Security Symposium.

[64] Wenjie Xiong and Jakub Szefer. 2020. Leaking Information Through Cache LRU
States. In IEEE Symposium on High Performance Computer Architecture (HPCA).

[65] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, ChristopherW. Fletcher, RoyH.
Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side Channel
Attacks in a Non-Inclusive World. In IEEE Symposium on Security and Privacy

(S&P).
[66] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces

Using the FLUSH+ RELOAD Cache Side-channel Attack. IACR Cryptol. ePrint

Arch. 2014/140 (2014).
[67] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-channel Attack. In USENIX Security Symposium.
[68] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2012. Cross-

VM Side Channels and their use to Extract Private Keys. In ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS).
[69] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-

tenant Side-channel Attacks in PaaS Clouds. In ACM SIGSAC Conference on

Computer and Communications Security (CCS).

15

https://github.com/google/security-research-pocs/tree/master/spectre.js
https://github.com/google/security-research-pocs/tree/master/spectre.js

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Caches
	2.2 Cache Side-Channel Attacks

	3 Cache Manipulation Paradigms
	3.1 Windowed Paradigm
	3.2 Windowless Paradigm
	3.3 This Work: ps

	4 Prime+Scope
	4.1 Threat Model
	4.2 General Description
	4.3 Instantiation

	5 Finding Efficient Prime Patterns
	5.1 Last-Level Cache (LLC)
	5.2 Coherence Directory (CD)

	6 Case Studies
	6.1 Temporal Precision
	6.2 Susceptibility to Noise
	6.3 Cross-Core Covert Channel
	6.4 Side-Channel Attack on AES
	6.5 Finding Congruent Addresses

	7 Related Work
	7.1 Classification of Attack Techniques
	7.2 Cache Attacks and Replacement Policies

	8 Limitations and Countermeasures
	9 Conclusion
	References

