
SPECTREM: Exploiting Electromagnetic Emanations During Transient Execution

Jesse De Meulemeester
COSIC, KU Leuven

Antoon Purnal
COSIC, KU Leuven

Lennert Wouters
COSIC, KU Leuven

Arthur Beckers
COSIC, KU Leuven

Ingrid Verbauwhede
COSIC, KU Leuven

Abstract
Modern processors implement sophisticated performance op-
timizations, such as out-of-order execution and speculation,
that expose programs to so-called transient execution attacks.
So far, such attacks rely on specific on-chip covert chan-
nels (e.g., cache timing), instilling the hope that they can
be thwarted by closing or weakening these channels. In this
paper, we consider the inevitable physical side effects of tran-
sient execution. We focus on electromagnetic (EM) emana-
tions produced by the processor and develop two lightweight
and accurate EM channels to extract secret bits from the tran-
sient window. We propose SPECTREM, a Spectre variant for
embedded devices exposed to physical access by an attacker.
While it assumes a physical adversary, it does not fundamen-
tally require code execution, expanding its applicability in the
embedded world. We evaluate SPECTREM on an Arm Cortex-
A72, leaking up to 366 bits per second at a bit error rate as
low as 0.008 %. To our knowledge, this is the first practical
demonstration of physical transient execution attacks.

1 Introduction

Connected and embedded devices are taking up an ever-
increasing presence in modern life. As the role of these de-
vices grows, security becomes paramount. Faced with higher
computational demands, embedded processors have become
increasingly more powerful by leveraging clever optimiza-
tions such as out-of-order execution and speculation. Al-
though these constructs greatly improve the efficiency of the
processor, they have been shown to be vulnerable to attacks
that break common isolation properties. In particular, tran-
sient execution attacks invalidate implicit assumptions im-
posed by the developer [10, 12, 40, 49]. They can be divided
into two broad categories, Spectre and Meltdown, exploiting
prediction mechanisms or faulting instructions, respectively.
These attacks are particularly devastating in contexts where
multiple users operate on the same system, such as cloud
environments, where isolation between customers is critical.

Following their public disclosure in 2018, a whole range of
transient execution attacks were discovered; exploiting new
mechanisms [7, 11, 33, 43, 52], or leveraging different exfiltra-
tion techniques [9, 14, 20, 47, 67, 72].

In the context of embedded and internet-of-things (IoT)
devices, potential adversaries may have physical access to the
computing device. In some cases, the adversary may even
be the intended end-user. Such physical access exposes the
device to a myriad of attacks, leveraging side effects of its
computations in the physical world. Indeed, the power con-
sumption or electromagnetic (EM) emanations of a device
have been shown to reveal details about the data processed
by the device, as well as the computations performed on
them [23,41,62]. Physical effects can also create covert chan-
nels (i.e., unintended communication channels) using, e.g.,
power [32, 48], EM [29, 68, 76], or thermal effects [55].

So far, transient execution attacks have only considered
software-observable side effects, e.g., cache timing [40] or
port contention [9], to extract sensitive values. With only one
exception [67], this limits their attack surface to attackers
with code execution on the device. Furthermore, it instills
the hope that transient execution attacks can be overcome by
closing or weakening specific on-chip covert channels [1, 36–
38,51,66,74]. Other countermeasures, like isolation [15,17] or
randomization [60,63,64,73] of micro-architectural elements,
do not preclude leakage in the physical domain either.

This paper explores whether the physical side effects of
transient instructions can be leveraged for an attack. Despite
already being proposed theoretically by Kocher et al. in
2018 [40], we have not seen any practical demonstration of
such attacks. Therefore, we ask the following:

How do the constraints imposed by the transient window
affect the physical covert channel? Can a physical adversary
mount Spectre attacks without the need for code execution?

Leveraging physical manifestations allows for the extraction
of secrets without fundamentally requiring code execution,

1

instead requiring only physical access to the target device
that exposes a gadget through an interface. As a result, such
attacks can operate in regimes for which transient execution
attacks previously posed only a limited threat, such as in em-
bedded contexts where the attacker is not able to execute code.
Additionally, such attacks can circumvent countermeasures
focused on micro-architectural-based covert channels.

In this paper, we introduce the first transient execution at-
tacks that do not rely on micro-architectural covert channels.
Instead, we leverage the inevitable electromagnetic emana-
tions resulting from transiently executed instructions. How-
ever, the number of transient instructions following the mispre-
diction or fault, i.e., the transient window, is severely limited.
Existing EM covert channels, such as GSMem [29], BitJab-
ber [76], or EMLoRa [68], are not applicable in this context,
as they require symbol lengths multiple orders of magnitude
larger than those tolerated by transient execution.

To overcome this challenge, we propose two lightweight
techniques to transmit secrets over EM waves. The first uses
instructions with operand-dependent latency, producing a
strong signal in the EM frequency spectrum. The second
introduces a control flow dependency on the transient secret
to produce a distinct peak in the frequency domain. Our tech-
niques demonstrate that information can be encoded within
the transient window for a physical attacker to decode.

We then embed our EM covert channels in SPECTREM, a
physical Spectre attack. It shares with NetSpectre [67] that
it does not require code execution on the target, and instead
relies on access to an interface to trigger the relevant Spectre
code patterns (so-called gadgets). However, by additionally
considering physical access for an attacker, SPECTREM can
work with more generic Spectre gadgets and reduce the re-
quired number of gadgets from two to one. We show the
occurrence of these vulnerable code patterns by considering
a case study of OpenSSH. Additionally, we also demonstrate
MELTEMDOWN, a physical Meltdown attack.

Based on our evaluation on the Arm Cortex-A72,
SPECTREM achieves a bitrate of up to 367 bit/s at a bit error
rate (BER) of <0.01 % and 0.769 % for the instruction and
control flow EM transmission, respectively. MELTEMDOWN,
on the other hand, achieves a BER of 0.00687 % at 241 bit/s.
Contributions. Our main contributions are as follows:

• We identify two electromagnetic covert channels capable
of working under the transient window constraints.

• We propose SPECTREM, a physical transient execution
attack not fundamentally requiring code execution.

• We perform an initial investigation of MELTEMDOWN,
a physical Meltdown attack.

• We evaluate our attacks on the Arm Cortex-A72 using
supervised and unsupervised classification methods.

• We perform a case study on OpenSSH and show vulner-
able code patterns occur in real-world code.

• We make our proof-of-concept implementations and
measurement artifacts publicly available.

Availability. Our code and measurement artifacts are available
at https://github.com/KULeuven-COSIC/SpectrEM.
Responsible disclosure. We disclosed our findings to Arm on
January 16th, 2023. Arm acknowledged these attacks, but did
not request an embargo as they generally consider physical
attacks out-of-scope.

2 Preliminaries

2.1 Physical Side Channels
Programs written in some high-level language are compiled
into instructions, i.e., machine operations the processor under-
stands. When executed on a physical device, these instructions
bring with them inevitable side effects, i.e., they consume
power, emanate electromagnetic waves, and produce heat. Dif-
ferences in operands or operations can manifest themselves
in subtle differences in side effects. By collecting measure-
ments, or traces, of these physical quantities over time, the
differences can be leveraged to gain information about the
exact operations or operands.

Side-channel attacks use this information to extract secrets
from a victim process, which are often cryptographic imple-
mentations. While a cryptographic algorithm may be theoreti-
cally secure, subtle implementation details may expose it to
leakage of secret information through side channels [41].

Covert channels use the same side effects, not to passively
eavesdrop on a victim program, but instead to create a hidden
communication interface, i.e., with a deliberate transmitter
and receiver. Such an ad-hoc channel allows an attacker to
transfer data between parties, despite not being allowed to
communicate by some security policy (e.g., a sandbox).

One key difference with side channels is that, for covert
channels, the leakage is intentional [45]. Transmitter and re-
ceiver are either cooperating or, as in transient execution at-
tacks, a victim program is forced by an attacker to perform
some action that leaks secret information (cf. Section 2.3).

Various physical phenomena may be used for side-channel
attacks and covert channels. This paper focuses on the ema-
nation of EM waves by the computing device to establish EM
covert channels [29, 68, 76].

2.2 Out-of-Order Execution and Speculation
To improve throughput and efficiency, modern processors
often have multiple independent execution units, allowing for
multiple instructions to be executed at the same time. These
instructions need not be executed in the order in which they
were issued. If certain instructions do not depend on any
previous ones, the processor may execute them as soon as
their operands are available. This avoids unnecessary stalls
due to data hazards, thereby improving performance.

Control hazards, on the other hand, can still stall the out-
of-order pipeline and require additional mechanisms, such

2

https://github.com/KULeuven-COSIC/SpectrEM

as speculation, to prevent. Speculation predicts the outcome
of certain operations, such as branches, to prevent stalls. An
accurate prediction results in a significant performance im-
provement as the stall is avoided, whereas a misprediction
only incurs a small penalty on top of the stall. In case of a
misprediction, instructions that were speculatively executed
are discarded without affecting the architectural state of the
processor. Even branch predictors with a moderate prediction
rate will therefore see a significant performance improvement.

Modern processors leverage a variety of prediction mech-
anisms. In the case of branch prediction, a pattern history
table (PHT) determines whether a direct branch will be taken,
taking into account the (recent) history of the branch. For
indirect branches, a branch target buffer (BTB) is used to pre-
dict the target address of that branch. Together, they allow the
processor to predict any branch target, significantly improving
performance. Other prediction mechanisms include memory
dependence prediction, which aims to predict whether certain
memory access operations depend on each other, and return
address prediction.

2.3 Transient Execution Attacks

Prediction mechanisms are often highly effective, yet they
inevitably experience mispredictions. This results in instruc-
tions that were speculated, and thus executed, but not com-
mitted, called transient instructions [12]. The window in time
during which they occur is called the transient window. An-
other source of transient instructions are faulting instructions—
instructions that raise an exception. Due to out-of-order exe-
cution, instructions architecturally following such instructions
may have already been executed and will have to be discarded.

While architecturally invisible, micro-architectural ele-
ments such as caches are affected by transient instructions.
As a result, transient instructions may encode information
in micro-architectural components, acting as the transmitting
end of a covert channel (cf. Section 2.1). By controlling which
instructions are executed in the transient domain, attackers
can retrieve architecturally inaccessible data. This idea forms
the basis for so-called transient execution attacks.

Transient execution attacks are categorized into two groups
depending on the source of the transient instructions [12].
They originate either from a prediction mechanism—Spectre-
type attacks [7,33,40,43,52]—or from a faulting instruction—
Meltdown-type attacks [10, 49].

2.3.1 Spectre

Spectre attacks [40] exploit prediction mechanisms resulting
in transient instructions and can be subdivided based on the
exact prediction mechanism they exploit [12]. Spectre-PHT
and Spectre-BTB exploit the pattern history table and branch
target buffer of the branch predictor, respectively [7,40]. Other
exploitable prediction mechanisms include the return stack

buffer (Spectre-RSB) [43, 52] and the memory dependence
predictor (Spectre-STL) [33].

The first Spectre variant, Spectre-PHT, exploits memory
accesses guarded by a bounds check. Such checks are typi-
cally employed to prevent buffer overreads, but can in certain
scenarios be circumvented by leveraging transient execution.
In particular, the adversary can train the branch predictor to
predict that the provided index adheres to the bounds check,
in which case an out-of-bounds value may be accessed tran-
siently. Subsequent transient instructions can then transmit
this value through a covert channel, e.g., by encoding it in the
cache. The condition variable, which for instance determines
the maximal value of the provided index, is typically flushed
from the cache [40]. This increases the transient window size
and improves the success rate of the attack.

2.3.2 Meltdown

Meltdown attacks [10, 49] exploit transient instructions fol-
lowing a faulting instruction, e.g., an unauthorized access
to kernel memory or a system register. Exceptions resulting
from a faulting instruction are only raised when the instruc-
tion is committed. However, due to out-of-order execution,
instructions following this faulting instruction may already
have (partially) executed before this instruction is committed.
These transient instructions can be used to exfiltrate the result
of the faulting load through some covert channel.

The original attack [49] leverages out-of-order execution
to access kernel memory from user space. Other exception
mechanisms can also be exploited, allowing for different types
of attacks [12], including reading system registers [26] or
accessing memory in Intel SGX enclaves [10].

2.3.3 Gadgets

Transient execution attacks make use of gadgets, i.e., code
patterns that trigger the attack and/or transmit the secret value
through some covert channel. They can be either present in
the victim’s code base, typically in the case of a Spectre
attack, or written by the adversary [12]. Existing works typ-
ically exfiltrate the secret values via a cache covert channel
(e.g., FLUSH+RELOAD [75]). By accessing certain memory
addresses based on the secret value, an attacker observes a
change in access timings, allowing them to infer the value.

Besides the cache, other micro-architectural elements are
also susceptible to modifications by transient instructions.
NetSpectre [67] uses x86’s Advanced Vector Extensions
(AVX) to construct an AVX-based covert channel. This covert
channel relies on the latency of the AVX unit, which is sub-
stantially lower when powered up. SMoTherSpectre [9] lever-
ages port contention by timing certain instruction sequences
running in parallel with the victim’s transient instructions.
Alternate methods include using the floating point division
unit [20] or even using the branch predictor unit itself [14].

3

3 Electromagnetic Covert Channel Under
Transient Window Constraints

In this section, we consider EM covert channels that can
operate in the context of transient execution attacks. Since the
unauthorized access results from a mispredicted branch or a
faulting instruction, the secret value remains accessible only
until the processor corrects the wrongly executed instructions
by clearing the pipeline. As a result, the transient window size
places an upper bound on the number of instructions that can
be used to encode the secret value in electromagnetic waves.

Two factors contribute to this transient window size: the
size of the micro-architectural components, such as the re-
order buffer (ROB), and the time it takes for the processor
to resolve the branch. The former will generally define the
size for instructions occupying few clock cycles, whereas the
latter will dictate the size for more expensive operations.

To determine the instruction window available to the covert
channel transmitter, we extend the Speculator tool [53] for
AArch64. Our experiments, which are covered in detail in
Appendix A, indicate that the EM covert channel can utilize
no more than around 60 instructions on the Arm Cortex-A72.
Given this constraint, existing EM covert channels are not
suitable for transmitting secrets from the transient domain.
GSMem [29], for instance, proposes a symbol length of 1–
10 ms, multiple orders of magnitude larger than the transient
window size. Similarly, BitJabber [76] and EMLoRa [68]
require multiple accesses to main memory for each trans-
mitted bit, which is impossible within this window. Instead,
different techniques are required. Concretely, we identify two
techniques that allow the transmission of secrets within this
constraint while also requiring as few traces as possible; in-
structions with operand-dependent behavior, and control flow
dependencies.

3.1 Operand-Dependent Instruction Timing
Certain instructions are expensive to execute in hardware.
Computing a division, for instance, is an inherently iterative
process, which results in a much higher instruction latency
than, for instance, an addition or a multiplication. To avoid
excessive latency, these instructions will often return the result
as soon as it is known. This avoids unnecessary performance
degradation by waiting for the worst-case latency. Dividing
two small integers, for instance, takes fewer clock cycles than
computing the quotient of a large dividend and a small divisor.
We now demonstrate this dependency.
Methodology. The division instruction is one of the instruc-
tions that displays this behavior on the Arm Cortex-A72 [3].
We divide the largest unsigned 64-bit integer

(
264 −1

)
by

0, 3, and itself and measure the EM traces using setup A as
described in Section 5.1. Note that a division by zero on Arm
does not produce an exception but rather simply returns zero.
In order to assess the frequency response of two operands, the

100 MHz 150 MHz

30 MHz

Figure 1: Frequency dependency of the unsigned division
instruction on the Arm Cortex-A72.

1 bit = secret & bitmask;
2

3 res = dividend / (bit -1);

Listing 1: An EM covert channel where the operand
dependency of the udiv instruction leaks the value of bit.

fast Fourier transform (FFT) of the mean of 1000 traces, each
containing 64 identical divisions, is computed.
Results. Figure 1 shows the frequency spectrum resulting
from the division of the three considered cases. These three
divisions result in noticeably different frequency spectra.
Distinct peaks can be observed at 150 MHz, 30 MHz, and
100 MHz (and their harmonics), respectively. Given the clock
frequency of 600 MHz, they correspond to an execution la-
tency of 4, 20, and 6 clock cycles, respectively.

By controlling the operands to these time-varying instruc-
tions, one can construct a rudimentary communication inter-
face. An example using the division instruction is shown in
Listing 1. In this example, the value of bit will determine
which of the frequency spectra will be emitted (cf. Figure 1).
Based on the frequency components in the recorded trace, the
transmitted bit can be estimated by the receiver.

3.2 Control Flow Dependency

A second technique to transmit information via the EM chan-
nel is to create a control flow dependency on the value to be
transmitted, as shown in Listing 2. The micro-architectural
behavior of this branch can reveal information on the value.
Consider the branch predictor to predict the branch as taken.
By inferring from the EM emanations whether a pipeline clear
occurred, information about the value can be learned. We now
show how this can be done on the Arm Cortex-A72.

4

1 bit = secret & bitmask;
2

3 if (bit) {
4 ...
5 }

Listing 2: Control flow dependency on the variable bit.

0 100 200 300 400 500 600 700

Frequency [MHz]

A
m
p
li
tu
d
e
[A

rb
it
ra
ry

u
n
it
s]

Misprediction { Pipeline clear
Correct prediction { No pipeline clear

Figure 2: Frequency dependency of control flow dependencies
on the ARM Cortex-A72.

Methodology. We induce both correct predictions and mis-
predictions in a branch in the transient domain on the Arm
Cortex-A72 and measure the EM traces using setup A as de-
scribed in Section 5.1. A total of 16384 traces are collected
for which the mean of the respective classes is computed in
the frequency domain.

Results. Figure 2 compares the EM frequency response
for correct predictions versus mispredictions. The clock fre-
quency component, at 600 MHz, is more prominent when a
pipeline clear occurs, allowing it to be detected.

Concretely, transmitting values based on this clearing be-
havior first involves training the branch predictor for the con-
cerning branch. The direction it predicts is of no importance.
However, it needs to be consistent such that from the detec-
tion of the pipeline clear the bit can be inferred. After training
the branch predictor, the value of the bit determines whether
a pipeline clear occurs. Recovering the value then involves
deducing whether such a clear occurred or not.

4 Attack Overview

In this section, we discuss the assumed threat model for our
physical transient execution attacks, and cover the integration
of the above EM covert channels with Spectre and Meltdown.

4.1 Threat Model
Leveraging physical manifestations, instead of measuring tim-
ing differences stemming from micro-architectural elements,
results in a different set of requirements for the adversary. In
this context, we focus explicitly on embedded devices.
SPECTREM (Spectre attack). To mount a SPECTREM at-
tack, the adversary is assumed to have physical access to the
target device and a means of communication with the device
through an interface that exposes a gadget. In a similar way to
NetSpectre [67], this interface can be used to access the gad-
get, enabling speculative execution attacks without requiring
code execution.
MELTEMDOWN (Meltdown attack). In contrast to
SPECTREM, the MELTEMDOWN attack requires code ex-
ecution because it cannot rely on gadgets in the victim’s code.
The adversary is therefore assumed to have physical access
to the target device as well as unprivileged code execution
on the device. MELTEMDOWN demonstrates that preventing
specific micro-architectural-based covert channels is not a
complete countermeasure against Meltdown attacks.

4.2 SPECTREM
The SPECTREM instance we consider is based on Spectre-
PHT. The adversary, after mistraining the branch predictor,
provides a data packet containing an out-of-bounds index
to a gadget through an interface. Due to a misprediction,
the gadget accesses architecturally inaccessible data. The
transmission step of the attack can be performed with either
of the covert channels from Section 3. The two resulting
gadgets will be referred to as instruction gadgets and control
flow gadgets. The former leverage instructions with operand-
dependent timings, whereas the latter exploit control flow
dependencies on the secret value.

Listing 3 provides examples of both gadget types. For the
instruction gadget (Listing 3a), the operand-dependent be-
havior of the division instruction transmits the secret bit into
the physical domain. Note that in practice, multiple operand-
dependent instructions are required. For the control flow gad-
get (Listing 3b), leakage occurs through the control flow de-
pendency on the bit. In these examples, the attacker is as-
sumed to control the index variable. By forcing a mispredic-
tion and strategically choosing the value of index, the attacker
can trigger the leakage of an out-of-bounds bit through the
EM domain.

4.2.1 Preparing the Micro-Architectural State

The described EM transmission gadgets require the initial-
ization of two specific micro-architectural elements before
they can be exploited. First, the branch predictor needs to be
trained to force a misprediction during the attack, ensuring
the leakage of an out-of-bounds value. This training can take
place through the very same interface we assumed for the

5

1 if (index < len) {
2 bit = array[index] & bitmask;
3

4 res = dividend / (bit -1);
5 }

(a) SPECTREM – Instruction gadget.

1 if (index < len) {
2 bit = array[index] & bitmask;
3

4 if (bit) {
5 ...
6 }
7 }

(b) SPECTREM – Control flow gadget.

1 bit = access_secret();
2

3 res = dividend / (bit -1);

(c) MELTEMDOWN – Instruction gadget.

1 bit = access_secret();
2

3 if (bit) {
4 ...
5 }

(d) MELTEMDOWN – Control flow gadget.

Listing 3: Two types of SPECTREM and MELTEMDOWN gadgets, based on the two EM covert channels.

gadgets by simply providing an in-bounds index. In the case
of a simple two-bit branch predictor, as is the case for the
Arm Cortex-A72 [4], two packets with in-bounds indices will
ensure the branch is predicted not taken for the next packet.
Note that for the control flow gadget, the training should also
take the inner branch into account. However, this training
can take place together with that of the main branch. Each
extracted value, therefore, requires three calls to the gadget;
two to train the branch predictor and one to extract the value.

Second, the out-of-bounds value is transmitted during the
transient window opened by the misprediction. This window
can be prolonged by removing the condition variable corre-
sponding to the branch to be mispredicted from the cache.
When not assuming code execution, this can be performed
by thrashing the cache [67], i.e., evicting all cache entries by,
for instance, downloading a file from the target. While this
method lacks the granularity to evict a single entry from the
cache, the end result is effectively the same.

4.3 MELTEMDOWN

Both our described EM covert channels, leveraging operand-
dependent instruction timings and control flow dependencies,
can also be incorporated into a Meltdown attack.

The MELTEMDOWN instance we consider is based on
Meltdown-GP. Listings 3c and 3d give two examples of
MELTEMDOWN attacks using the instruction gadget and con-
trol flow gadget, respectively. Here, access_secret() is the
function that accesses the secret and generates an exception.
Due to out-of-order execution, the instructions following the
access, while not architecturally executed, will be executed
transiently, resulting in the leakage of the secret value.

5 Experimental Setup and Methodology

This section describes the experimental setup and methodol-
ogy that will be used throughout the evaluation.

5.1 Experimental Setup
5.1.1 Target Device

The attacks will be evaluated on a Raspberry Pi 4 model B,
which provides easy access to the backside of its quad-core
Arm Cortex-A72 processor after removing the integrated heat
spreader. The Cortex-A72 is one of Arm’s high-performance
CPUs geared towards mobile and embedded applications fea-
turing a superscalar, out-of-order pipeline [2, 4]. Running on
top of this device is Ubuntu 20.04 LTS (Focal Fossa). During
the experiments, we implement a number of measures to sim-
plify the signal processing and ensure more consistent and
repeatable results throughout the evaluation. Specifically, we
disable dynamic voltage and frequency scaling (DVFS) and
lock the clock frequency at the lowest available frequency
(600 MHz). Additionally, as the processor has four cores, the
test program is pinned to a single core.

We will revisit these assumptions in Section 7, where we
evaluate the impact of removing these simplifications.

5.1.2 Measurement Setup

We evaluate the proof-of-concept (POC) implementations of
the attacks described in Section 4 using two different setups.
The first setup, setup A, is relatively elaborate, allowing very
localized measurements of the target chip. The second setup,
setup B, is less precise but more accessible. The traces are cap-
tured using a Tektronix DPO70604C oscilloscope, which has
an analog bandwidth of 6 GHz at a sampling rate of 25 GS/s.

6

(a) Setup A. (b) Setup B.

Figure 3: The two setups used for evaluation.

To trigger the scope, a second probe is connected to one of the
general-purpose input/output (GPIO) pins of the Raspberry Pi.
We now describe both setups in detail.
Setup A. Setup A, shown in Figure 3a, uses a Langer ICR
HH500-6 EM probe, with a spatial accuracy of 300 µm,
mounted on a Langer FLS 102 stepper table that allows for
the precise positioning of the probe over the processor with
a resolution of 200 µm in either direction. The probe is con-
nected to the oscilloscope using the Langer BT 706 bias-tee,
which supplies the probe with power, followed by a 20 dB
preamplifier (Langer PA 203) with a bandwidth of 3 GHz.
Setup B. Setup B, shown in Figure 3b, uses a Langer RF-R
0,3-3 probe mounted on a stand that positions it at a fixed
location over the SoC. The probe is connected to two pream-
plifiers, the Langer PA 303 and Langer PA 203, with a band-
width of 3 GHz, amplifying the signal by 30 dB and 20 dB,
respectively, before acquisition by the oscilloscope.

5.2 Methodology

5.2.1 Proof-of-Concept Implementations

For the SPECTREM attack, we evaluate both the instruc-
tion and control flow gadgets. For the evaluation of
MELTEMDOWN, however, we will only consider the instruc-
tion gadget. The reason for this is that in a Meltdown attack,
the gadget is attacker-chosen code, and the instruction gadget
will be shown to outperform the control flow gadget.
Gadgets. Instruction gadgets use instructions that exhibit
operand-dependent execution times. As shown in Section 3.1,
the unsigned division (udiv) instruction displays such behav-
ior on the Arm Cortex-A72. Concretely, 64 udiv instructions
are inserted to transmit the value. While a victim binary will
almost certainly not contain this many leaky instructions at
vulnerable locations, it assumes the best-case scenario for the
attacker. In Appendix C, we study the effect of gadgets with

fewer such instructions.
The second gadget leaks information through a control flow

dependency on the secret. As the inference of the bit relies
on the micro-architectural clearing of the pipeline, the exact
operation within this branch is of no importance. We therefore
simply populate this branch with a nop.
Evaluation. To evaluate our SPECTREM POCs, an out-of-
bounds memory region is constructed within the device’s
memory and initialized with a random 256-bit string. A
bounds check guarantees this string is architecturally inacces-
sible. To prolong the transient window, we flush the condition
variable from the cache within the gadget itself. We do this
to simplify the data acquisition and evaluation process as it
ensures more consistent results. A more indirect approach to
achieve this is cache thrashing, as discussed in Section 4.2.1.
We will evaluate the impact of this technique in Section 7.3.

The MELTEMDOWN POC, on the other hand, is modified
from a cache-based Meltdown-GP POC [26], which extracts
the contents of the system registers. For the evaluation, we
consider the system identification registers as they contain
a constant, known value (i.e., a ground truth) and are not
accessible to user programs.
Trigger. To aid in the evaluation of the POCs, a GPIO-based
trigger signal is added right before or after the gadgets. Insert-
ing such artificial triggers helps to simplify the acquisition and
signal processing. Note that this is common practice in physi-
cal side-channel research [42,54,58]. In practice, an adversary
can, e.g., trigger on the communication interface [5, 65], trig-
ger on a pattern present in the EM side-channel trace [8, 56],
or apply an additional signal processing step [24, 25].

5.2.2 Data Collection

An important consideration is the collection of the side-
channel traces. Each trace consists of 25000 sample points
for the Spectre POC and 20000 for Meltdown and thus cap-

7

tures a 1 µs and 0.8 µs window, respectively. For the Spectre
attacks, the oscilloscope was set up to only capture the traces
where the provided index was out-of-bounds.

Unless otherwise noted, bit error rates are based on 524288
traces, where each trace encodes a single bit. The traces are
collected in 32 batches of 16384 traces each, where each
batch consists of four frames of 4096 traces. A frame refers
to a set of traces that are captured and sent to the computer
simultaneously. This configuration is based on the specifica-
tions of the oscilloscope and considerations with regard to
bit extraction. The oscilloscope, for instance, only has finite
memory, and 4096 is roughly the maximal number of traces
that can be collected at once. The batch size, on the other
hand, is chosen to speed up the bit extraction by ensuring that
the entire batch fits in memory.

5.2.3 Bit Extraction

For classification, we propose both supervised and unsuper-
vised methods. This models cases where it is possible to col-
lect sufficient training data and those where it is not. Specif-
ically, the supervised method uses a multilayer perceptron
(MLP) network. The unsupervised method is based on the
Gaussian mixture model (GMM) clustering algorithm [18].

The classification is performed in the frequency domain.
This makes the techniques insensitive to alignment, which is
complicated by the out-of-order execution of the processor.
Additionally, especially for the instruction gadget, the leakage
is inherently present in the frequency domain. The optimal
position of the FFT window was determined experimentally.
The size of this window was chosen at 5000 samples.
Multilayer Perceptron. As we are working in the frequency
domain with a limited number of inputs, we choose a fully
connected network. Specifically, we use an FFT window size
of 5000 and only consider the lowest 1000 frequencies. The
architecture of the MLP is chosen in accordance with the
architecture proposed by Pham et al. [59] as they target the
same SoC and also perform classification in the frequency do-
main, with the only difference being the size of the input layer.
The resulting MLP architecture is shown in Table 4 in Ap-
pendix B. To improve the BER, we only consider predictions
with a confidence higher than 95 %.

An MLP is trained for each POC and each setup separately.
For each network, 327680 traces are collected in 20 batches
of 16384 traces. We use 14 batches to train the network,
equating to 229376 traces, and the remaining 98304 are used
for validation. The networks are trained with binary cross-
entropy loss and L2 regularization using the Adam optimizer
with an initial learning rate of 10−4 and an inverse time decay
learning rate scheduler with a decay rate of one every ten
epochs. The batch size is 32. Both training and inference were
performed using a low-end desktop computer (Dell OptiPlex
3060, no discrete GPU). Due to the simplicity of the chosen
network, training can be completed in less than an hour.

Gaussian Mixture Model. The evaluation using the GMM
is performed for each batch separately and then averaged.
We perform two preprocessing techniques to increase the
accuracy of the GMM models. First, instead of providing
all frequency components to the GMM algorithm, only the
frequency components carrying leakage information are pro-
vided. These components are determined by performing a
t-test between the frequency spectra of the traces based on the
encoded secret bit. Second, we filter outliers from the GMM
evaluation, which is especially important for the control flow
gadget. Otherwise, strong outliers cause the algorithm to con-
sider these outliers as one of the groups. The outliers are iden-
tified by computing the z-score corresponding to the clock
frequency component and filtering out any traces that exhibit
a z-score larger than 1.7 in absolute value.

6 Evaluation

6.1 SPECTREM Attack
In this section, we evaluate the performance of the two
SPECTREM POCs, one implementing an instruction gadget
and the other implementing a control flow gadget.

6.1.1 Probe Position

For optimal results, careful consideration must be taken when
positioning the probe. Intuitively, as the leakage results from
executing code on a specific physical core, placing the probe
closer to said core may result in better performance. This
experiment will use the stepper table of setup A to determine
the optimal location.
Methodology. We enumerate a 7.20 mm by 7.95 mm grid
at a resolution of 150 µm. This grid, indicated in Figure 4a,
constitutes the whole SoC, as well as a small part outside.

We collect 4096 traces at 2544 positions for each POC
running on each core. Each location is evaluated using the
unsupervised GMM clustering algorithm to avoid training a
network for each location separately, which would require
many more traces and significantly increase the run time.
Results. Figure 4b shows the BER at every measured location
for both gadgets (row-wise) running on each core (column-
wise). We use this data in the following experiments to de-
termine the optimal probe position for each core and gadget.
Interestingly, the optimal position for a specific core is slightly
different for each gadget. One possible interpretation is that
the gadgets have different physical leakage sources, which
may reside in different locations on the core.

In what follows, we consistently consider the two resulting
optimal positions for core 1, one for each type of gadget,
to ensure consistency and comparability across experiments.
Note that, for setup B, which does not accommodate precise
positioning, we manually position the probe at (roughly) the
optimal position.

8

(a) Scanned area.

Probe location [mm]

P
ro

b
e

lo
ca

ti
o
n

[m
m

]

Core 0
7

6

5

4

3

2

1

0

5 " 10!2

10!2

10!1

0:5
Core 1 Core 2 Core 3

In
stru

ction
gad

get

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

C
on

trol
.
ow

gad
get

(b) BERs for both gadgets (row-wise) running on different cores (column-wise).

Figure 4: Heatmaps showing the BER at various probe positions (right) within the scanned area (left).

0 1 2 3 4 5

Number of training packets

10!4

10!3

10!2

10!1

100

B
E
R

Setup A | GMM
Setup A | MLP
Setup B | GMM
Setup B | MLP

(a) Instruction gadget.

0 1 2 3 4 5

Number of training packets

10!4

10!3

10!2

10!1

100

B
E
R

Setup A | GMM
Setup A | MLP
Setup B | GMM
Setup B | MLP

(b) Control flow gadget.

Figure 5: BER as function of the number of training packets.

6.1.2 SPECTREM Performance

Mistraining the branch predictor is a crucial step in mounting
a Spectre-PHT attack. As our SPECTREM attacks do not
assume code execution, this training has to take place through
the interface. The number of packets required for mistraining
determines the speed at which values can be extracted. This
experiment evaluates the performance of both gadgets and
quantifies the relation between the number of training packets
and the acquisition rate. As discussed in Section 4.2.1, the
two-bit predictor of the Arm Cortex-A72 [4] implies that, in
theory, two training packets are sufficient.
Methodology. We first evaluate both gadgets using 5 train-
ing packets based on 32 batches of 16384 traces. We then
evaluate the effect of reducing the number of training packets
by considering zero up to five packets. For each number of

training packets, we collect five batches of traces. The BERs
are computed using the pre-trained MLP networks and the
GMM clustering algorithm.

We also record the elapsed time, which has two main con-
tributors: the triggering of the gadgets and the transfer of the
traces from the oscilloscope to the PC used for classification.
The latter is a characteristic of, on the one hand, the oscillo-
scope and, on the other hand, its connection to the PC. The
classification time is explicitly excluded, as it does not present
a bottleneck in the data collection pipeline.
Results. The bit error rates after training with five training
packets are summarized in Table 1. Figure 5 displays, for
both gadgets, the measured BERs as a function of the number
of training packets. The error rates, as expected, drop when
increasing the number of training packets. They indicate at
least two training packets are required to consistently mistrain
the branch predictor, indicative of a two-bit branch predictor.

Note that for the instruction gadget, the BER will also de-
pend on the number of operand-dependent instruction present
within the gadget. We evaluate the effect of fewer variable-
time instructions in Appendix C.

Table 2 displays the time measurements acquired during
the testing campaign. Capture time reflects the time to trigger
the gadget and measure the trace, whereas transfer time covers
the time to transfer the traces from the oscilloscope to the
PC. Note that, while both are expressed as milliseconds per
trace, they were timed on frames of 4096 traces each, where
the table displays the average time per trace. The acquisition
rates indicate the number of traces that can be acquired per
second. This table shows that the highest realistic acquisition
rate for these POCs is around 367 traces per second for this
specific setup, as at least two training packets are required
to obtain an acceptable BER. Note that the number of traces
per second does not necessarily correspond to the number of

9

Table 1: Bit error rates after five training packets.

Instruction gadget Control flow gadget

Setup A Setup B Setup A Setup B

GMM 0.350 % 0.011 % 3.592 % 2.441 %
MLP 0.167 % 0.008 % 2.609 % 1.037 %

Table 2: Acquisition speeds as function of training packets.

Training
packets

Capture time
[ms/trace]

Transfer time
[ms/trace]

Acquisition rate
[traces/s]

0 0.417 1.508 519
1 0.826 1.502 430
2 1.229 1.498 367
3 1.622 1.507 320
4 2.036 1.501 283
5 2.446 1.490 254

bits that can be extracted per second. This is only the case if
the BER described above is considered acceptable. In cases
where a lower BER is required, multiple traces will have to
be collected for each bit. Additionally, these figures represent
the optimal bitrates. Real-world targets will likely see a lower
rate, as will be shown in Section 8.

To place the measured acquisition rates into perspective,
we compare our results with previously described Spectre
attacks. Our attacks are closely related to NetSpectre [67],
which also overcomes the code execution requirement by op-
erating through an interface. The NetSpectre attack based on
an AVX covert channel is able to extract 60 bits per hour over
a local network with an unspecified BER. When using a cache
covert channel, this rate drops to 15 bits per hour. The original
Spectre attack, which does assume a co-located attacker with
code execution, claims a throughput of 80 kbit/s and a BER
of <0.01 % when using an unoptimized implementation [40].
The different results are summarized in Table 3, where, for
our attacks, the results when using the MLP on setup B corre-
sponding to two training packets are displayed. Note that the
bitrate in this table differs slightly from Table 2 as the MLP
evaluation only considers confident predictions.

Note that Spectre and NetSpectre are evaluated on an x86
processor, whereas SPECTREM is evaluated on AArch64.
One reason we considered AArch64 is that Arm has a bigger
market share in the embedded context. Another important
consideration is that NetSpectre operates with a remote adver-
sary, whereas SPECTREM requires a physical attacker. Both
of these factors make a direct comparison difficult. However,
the evaluation still provides an indication of the relative per-
formance of the respective attacks, each within their assumed
threat model.

Table 3: Comparison of the extraction rates and BERs for
the different Spectre scenarios leveraging different covert
channels.

Covert Code Phys. Bitrate BER
channel Exec. Access [bit/s] [%]

Spectre [40] Cache Yes No 80000 <0.01
NetSpectre [67] Cache No No 0.004 –
NetSpectre [67] AVX No No 0.017 –
SPECTREM – Instruction EM No Yes 366 <0.01
SPECTREM – Control flow EM No Yes 350 0.769

6.2 MELTEMDOWN Attack

We now describe MELTEMDOWN, our physical Meltdown
attack, for which the implementation details were already
explained in Section 5.2.1. As mentioned, this attack will
only be evaluated with the instruction gadget on setup B. We
only consider the instruction gadget, as it has been shown
to provide better results for the Spectre attack (cf. Table 1).
We only consider setup B, as the instruction gadget performs
better on setup B, and this setup is the most accessible.
Methodology. A total of 524288 traces (32 batches) are col-
lected, where each trace extracts one of the 248 test bits cor-
responding to the bits of the identified system registers. The
traces are evaluated using the pre-trained MLP network as
well as with the clustering algorithm.
Results. Of the 524288 traces, only 123 out of 496773 con-
sidered traces were misidentified when using the GMM,
whereas 36 errors in 524048 traces were recorded using
the pre-trained MLP. This results in BERs of 0.02476 %
and 0.00687 % for the GMM and MLP, respectively. The
MELTEMDOWN attack thus performs slightly better than its
SPECTREM counterpart. The reason for this can be found in
the larger transient window for Meltdown, which we observed
using the Speculator tool [53] (cf. Appendix A).

For this POC, the acquisition rate averages 241 traces/s.
Similar to the SPECTREM attack, MELTEMDOWN cannot
compete against attacks leveraging cache covert channels.
The original Meltdown attack, for instance, achieves a best-
case rate of 4.656 Mbps with a BER of 0.003 % [49], which is
more than four orders of magnitude faster than our observed
rate. Note, however, that this result is, similar to before, ob-
tained on a different ISA, and that our MELTEMDOWN POC
was not optimized, meaning higher rates should be obtainable.

7 Reducing Evaluation Assumptions

The evaluation thus far used various constructs to ease the
evaluation process. We now discuss how each can be removed
individually, followed by an evaluation to assess the impact on
performance. We focus specifically on the control flow gadget
for SPECTREM, but the same techniques can be applied for

10

the instruction gadget and for MELTEMDOWN.
Methodology. The evaluation parameters are identical to the
evaluation above. We base our evaluation on 524288 traces
(i.e., 32 batches), mistrain the branch predictor with five train-
ing packets, and evaluate the resulting traces using both tech-
niques. The evaluation is performed on setup A.

We consider enabling frequency scaling, leaving the core
affinity unspecified, and cache thrashing. For each of these
individually, we discuss how they affect the extraction phase
and experimentally verify their impact on performance.

7.1 Frequency Scaling
When DVFS is enabled, the processor will regulate its operat-
ing frequency to maximize performance and minimize power
consumption while remaining within the thermal design lim-
its. As the segmentation of traces is based on the frequency
spectrum, the operating frequency needs to be known for ev-
ery trace. This operating frequency can, however, be easily
inferred from the frequency spectrum itself. A large peak will
naturally be present at the instantaneous clock frequency. By
identifying this peak, we can group traces based on their clock
frequency and evaluate them separately.

The exact operating frequency of the processor does not ap-
pear to significantly influence the corresponding BER. After
separating the traces into their corresponding frequencies and
evaluating them separately, we obtained a BER of 5.560 %
using the GMM algorithm and 3.237 % for the MLP network.

7.2 Core Affinity
When unconstrained, the scheduler assigns processes to a spe-
cific core and switches them around based on various factors,
such as the current CPU load. This may hurt the performance
of a SPECTREM attack as the EM probe position is optimized
for one specific core. When the victim process runs on an-
other core, however, the recorded traces display a detectable
characteristic, allowing the attacker to filter out any traces not
corresponding to the optimal core. As a result, the observed
bitrate will—on average—decrease by 75 %. However, when
optimal probe regions for different cores overlap, for instance,
for cores 0 and 1 in Figure 4, the probe position can be chosen
to minimize the combined BER.

When positioning the probe over the optimal position for
cores 0 and 1, we obtain a BER of 3.760 % for the GMM and
1.791 % for the MLP. The bitrate reductions are 22.647 % and
24.844 %, respectively. These reductions include both traces
running on different cores as well as outliers and uncertain
predictions. While one would expect the bitrate penalty to
be higher, it appears the scheduler has an inherent bias to-
wards cores 0 and 1, as the theoretical bitrate reduction when
considering two cores would be 50 %.

The presence of overlapping optimal regions is, of course,
dependent on the specific processor. In the absence of any

overlaps, the reduction in bitrate would be around 75 %,
though a different measurement setup consisting of multi-
ple probes may achieve a bitrate closer to the original.

7.3 Flushing
To prolong the length of the transient window, the variable
describing the length of the array should not be present in
the cache. As mentioned in Section 4.2.1, a remote adversary
can achieve this through thrashing the cache, i.e., by access-
ing some other function that—through excessive memory
accesses—essentially removes all entries from the cache.

We simulate this behavior by implementing a second func-
tion that iterates over a large memory buffer and expose it
through the same UDP interface as the gadget. A third func-
tion simulates an access to the out-of-bounds memory region
of interest to ensure it is brought back into the cache.

Due to the indiscriminating nature of the cache thrashing,
other aspects of the test program will also be affected. As a re-
sult, the leakage appears more spread out in the time domain.
To accommodate this, the inputs to the MLP network are
slightly changed to include multiple FFT windows, i.e., a spec-
trogram, rather than a single one. Moreover, the cache thrash-
ing introduces additional operations which slow down the
extraction. When considering 5 training packets, for instance,
the capture rate is reduced from 254 to 31.602 traces/s.

When filtering unconfident predictions, the MLP achieves
a BER of 13.601 % at 16.648 traces/s, corresponding to a
capacity of 7.097 bit/s. Similarly, for the GMM clustering
algorithm, considering only confident predictions results in
a BER of 22.172 % at a throughput of 11.279 traces/s, or a
capacity of 2.670 bit/s.

This higher BER effectively means that an adversary will
have to collect a few traces for each value to extract. Never-
theless, this number will still be relatively low.

8 Case Study

This section presents a case study of OpenSSH, a popular
open-source implementation of the Secure Shell (SSH) pro-
tocol. OpenSSH is a relevant target as it (1) represents a
security-critical application featuring interactions with exter-
nal users, (2) allows for manual review due to its modest code
base size, and (3) is widely deployed on embedded devices.
Methodology. We perform a high-level manual review of the
latest version of OpenSSH at the time of writing (version 9.3)
for control flow gadgets and assess under which circumstances
these gadgets would be present in the compiled binary.

The evaluation in this section is performed identically to
Section 6, introducing the same simplifications and using the
GMM and MLP evaluation methods. The binaries are com-
piled using the default configuration with either gcc (9.4.0-
1ubuntu1~20.04.1) or clang (10.0.0-4ubuntu1). The SSH dae-
mon is instantiated on the target device using the default

11

1 Channel *
2 channel_by_id(struct ssh *ssh, int id) {
3 Channel *c;
4

5 if (id < 0 || (u_int)id >= ssh->chanctxt ->
channels_alloc) {

6 logit_f("%d: bad id", id);
7 return NULL;
8 }
9 c = ssh->chanctxt ->channels[id];

10 if (c == NULL) {
11 logit_f("%d: bad id: channel free", id);
12 return NULL;
13 }
14 return c;
15 }

Listing 4: The channel_by_id function in channels.c.

configuration. The gadgets are triggered using the Paramiko
Python library on a remote computer over the local network.
We collect a total of 81920 traces (i.e., 5 batches), where for
each trace we mistrain the branch predictor using five training
packets. After accessing the gadget, we retrieve the out-of-
bounds value to compute the BER. Note that these values do
not necessarily contain any relevant information and are only
used for verification purposes.

8.1 SSH Server
The SSH specification allows multiple channels to be opened
over a single connection. As defined in RFC 4254, messages
pertaining to a specific channel always contain the recipient’s
channel identifier [50]. Listing 4 shows the function that
processes this identifier and returns a pointer to the channel.
Line 5 performs a bounds check. Line 10 introduces a control
flow dependency on the variable c, which is loaded in based
on the provided id, thus making it a control flow gadget.

While a gadget from a source-code perspective, both gcc
and clang place the buffer pointer in the same cache line as
its length due to the current structure of the Channel struct.
As a result, this code pattern would not be exploitable in its
current state. However, small changes to the source code or
compilers could still introduce this gadget in the compiled
binary, as we show in the evaluation.
Methodology. We modify channels.c to align the vari-
able channels_alloc with the cache line size, thus plac-
ing it in a different cache line. We target the function
channel_input_window_adjust, where we repeatedly sup-
ply a window adjustment of zero bytes.
Results. We obtained a capacity of 2.96 bit/s (23.87 traces/s
at a BER of 29.56 %) when using the GMM clustering al-
gorithm, and 20.94 bit/s (33.57 traces/s at a BER of 7.28 %)
when using the MLP network.

8.2 SFTP Server
The SSH File Transfer Protocol (SFTP) allows users to se-
curely access a remote file system. Each opened file or direc-
tory is assigned a unique handle, which is sent by the external
user in each operation to identify its target [22]. Listing 5
shows the function that checks whether the provided handle is
valid and of the correct type. When used in an if-statement, as
is the case in, e.g., the get_handle function, a control-flow
dependency is placed on the comparison.

In the specific example of the get_handle function, how-
ever, the presence of the gadget in the binary is not guaranteed
and depends on the compiler. For instance, gcc produces a
conditional select, which does not show any leakage, whereas
clang does insert a branch instruction, thus creating a control
flow gadget. Similar to the SSH gadget, however, clang coin-
cidentally places the pointer to the buffer in the same cache
line as the length variable.
Methodology. We modify sftp-server.c to place the
pointer to the buffer and its length on different cache lines and
compile with clang. We target the process_read function
by repeatedly sending read commands with the length field
set to zero.
Results. We obtained a capacity of 20.41 bit/s
(45.67 traces/s at a BER of 12.84 %) when using the
GMM clustering algorithm, and 53.39 bit/s (69.27 traces/s
at a BER of 3.72 %) when using the MLP network.

8.3 Limitations
While this case study shows that vulnerable code patterns
can be found in real-world code bases, we were unable to
exploit the uncovered gadgets as-is, requiring minute changes
to the internal representation to make them exploitable. Such
changes could arise due to, for instance, benign source-code
modifications. With these changes in place, the evaluation
indicates that gadgets in complex, real-world binaries could
still be exploited.

The gadgets we discuss, however, are not particularly pow-
erful gadgets, only allowing comparison with a fixed value.
Additionally, OpenSSH implements countermeasures that en-
sure the private key is not exposed when at rest by encrypting
it with a large prekey, thus significantly increasing the attack
effort for transient execution attacks.

Due to the absence of applicable gadget scanners, we per-
formed a manual review. A thorough evaluation of larger code

1 static int handle_is_ok(int i, int type) {
2 return i >= 0 && (u_int)i < num_handles &&

handles[i].use == type;
3 }

Listing 5: The handle_is_ok function in sftp-server.c.

12

bases would require automated tools that are able to accurately
detect exploitable control flow gadgets. While tools capable
of detecting the patterns that define control flow gadgets exist,
e.g., uncovering 407 of these gadgets in the Linux kernel [35],
these tools are typically written for x86 binaries and often do
not differentiate between gadgets that are accessible to a re-
mote attacker through an interface. We leave a more thorough
exploration of the attack surface for future work.

9 Discussion

Relevance. In contrast with traditional transient execution
attacks, SPECTREM and MELTEMDOWN rely on physical
covert channels. While SPECTREM, for instance, requires
a physical attacker, it opens the possibility of transient exe-
cution attacks on embedded devices for adversaries without
code execution. Additionally, both attacks show that counter-
measures against transient execution attacks must not focus
on mitigating micro-architectural-based covert channels as
this may fail to prevent these attacks in embedded scenarios.
Instead, more fundamental approaches are required, focusing
on the source of the leakage rather than its effects.

Compared to other physical attacks, the attacks described
in this paper distinguish themselves by leveraging micro-
architectural behavior. While profiled side-channel attacks
on unprotected cryptographic implementations may require
a similar or lower attack effort compared to a SPECTREM
attack, controlling the micro-architectural behavior allows
SPECTREM to control the disclosed memory location rather
than inferring a specific cryptographic key. Additionally,
while a physical attacker could potentially perform more pow-
erful attacks, such as snooping the memory bus, performing
these attacks may be more involved and may require more
expensive equipment [46] compared to SPECTREM attacks.
Limitations. While a control flow gadget can be considered
more generic than a conventional Spectre gadget—indeed,
this pattern can be readily found in, e.g., the Linux ker-
nel [12, 35]—a major limitation of the SPECTREM attack
is the requirement for this gadget to be accessible through an
external interface. While this enables attacks without requir-
ing code execution, it limits the number of available gadgets.

Similarly, for the instruction gadget, the requirement for
multiple variable-time instructions (cf. Appendix C) means
that it is unlikely to occur in a real-world code base. Instead,
this gadget is more relevant in contexts where an attacker can
write their own gadgets, such as in a MELTEMDOWN attack.
Applicability to other interfaces. During the evaluation, we
considered SPECTREM attacks with gadgets exposed through
a UDP interface. This choice of interface was mainly a practi-
cal consideration. SPECTREM could, in principle, leverage
any interface present on the target device. Indeed, assuming
physical access to the device enables access to local interfaces
such as USB, I2C, or SPI.

Applicability to other ISAs. While we focused on an Arm-
based CPU to evaluate our proposed attacks, we believe our
results are relevant to other ISAs, including x86 and RISC-V.
Even though the micro-architectural implementation details
will differ between different ISAs or even between two dif-
ferent processors implementing the same ISA, the general
concepts remain the same. For the control flow gadget, we
note that most modern x86 processors also allow for nested
speculation. As a result, control flow dependencies may intro-
duce the same physical manifestations upon which the control
flow gadget is built. For the instruction gadget, we note that
the vast majority of processors have variable-time instruc-
tions [19]. As a result, we expect the findings of this paper to
be relevant for other ISAs.

10 Related Work

Gadgets. Spectre attacks that encode the transient secret value
in a micro-architectural element can also make use of a nested
comparison [39], similar to the control flow gadget. The leak
gadget from a NetSpectre attack [67], for instance, leverages
a memory load or an AVX instruction within a nested branch
to encode the secret bit in the cache or the AVX unit. One
difference is that our control flow gadget does not rely on
the presence of any particular instruction within the inner
branch, making them more general than NetSpectre’s leak
gadgets. Additionally, as NetSpectre assumes a remote adver-
sary, where we consider a stronger one with physical access,
NetSpectre requires a secondary gadget to read out the en-
coded value, which is not the case in our attacks.

BranchSpec [14], which encodes the secret value in the
branch predictor itself, considers gadgets that are identical
to our control flow gadget, i.e., not requiring any particular
instruction within the inner branch.

All of these examples also constitute control flow gadgets
in the context of electromagnetic covert channels. The main
difference is that attacks described above retrieve the secret
from a micro-architectural element, whereas in the case of
SPECTREM, this value is inferred through EM waves.
Countermeasures. Given the complexity and heterogeneity
of the attacks and the importance of the underlying mecha-
nisms that cause them, multiple solutions have been proposed
that attempt to thwart all attacks. The most straightforward
way to fend off any potential transient execution attack would
be to outright disable speculation and out-of-order execu-
tion [40, 49]. While highly effective, this would come at an
unacceptable cost with regard to performance. Instead, var-
ious alternative defenses have been proposed that attempt a
partial or full defense against transient execution attacks while
minimizing the performance degradation.

Meltdown attacks are easier to mitigate compared to Spec-
tre attacks. They rely on the behavior that faulting instructions
still pass on their results to subsequent instructions in the tran-
sient domain. Patching this behavior in hardware, e.g., by

13

passing in a default value when the instruction faults [12],
ensures that the secret value cannot be leaked.

As protecting against Spectre attacks, on the other hand, is
a non-trivial task, numerous software- and hardware-based
countermeasures have been proposed [13, 34]. Since all exist-
ing Spectre attacks employ micro-architectural-based covert
channels, one approach that has been explored is to prevent
or limit the use of these channels [1, 36–38, 51, 66, 74]. While
this can stop some attacks, it does not prevent the use of phys-
ical covert channels. Instead, the micro-architecture could,
for instance, be changed to prevent the use of speculatively
loaded data by subsequent instructions [6,16,21,72]. This can
prevent Spectre attacks regardless of the used covert channel,
as the instructions to transmit the value are now not allowed
to be executed. Alternatively, the transient execution can be
stopped when dealing with (potentially) secret data by, for in-
stance, strategically inserting speculation barriers—that stop
speculation—in vulnerable code constructs. They can stop
some attacks [53], but they do not prevent leakage through
every potential side channel [67] and rely on detection tools
to identify the vulnerable code snippets.
Gadget Detection. Selective countermeasures for Spectre-
PHT rely on detection mechanisms to select vulnerable code
segments to protect. Detecting gadgets is not straightforward
due to the versatility of constructs and covert channels. Tools
relying on static code analysis are inherently limited by the
provided templates. Any gadget not adhering to these tem-
plates, for instance, because a different covert channel is used,
will not be detected [39]. To address this, tools have been
proposed that utilize taint analysis [35, 61, 71], symbolic exe-
cution [27,28,70], fuzzing [57], and deep learning [69]. These
tools do not rely on static pattern matching and will therefore
be able to uncover more potential gadgets.

Not all tools can be used to detect control flow and instruc-
tion gadgets. Some tools limit their scope to cache-based
covert channels [28,61,69,70]. Others can detect control flow
dependencies on a transient secret, allowing them to detect
control flow gadgets, but not instruction gadgets [27, 35, 71].
SpecFuzz [57], on the other hand, exposes all gadgets that
can result in speculative out-of-bounds memory accesses. As
a result, it can detect any Spectre-PHT gadget regardless of
the covert channel, including both our EM gadgets.

These tools, however, do not necessarily distinguish be-
tween gadgets accessible through an interface, limiting their
applicability to find exploitable SPECTREM gadgets.
EM Covert Channels. Various electromagnetic covert chan-
nels have been proposed in the literature. These typically
focus on air-gapped computers, which are physically isolated
from external networks. Within this context, a desirable prop-
erty of the covert channel is a large disclosure range. To
achieve this, they build their covert channels upon architec-
tural components displaying distinct EM behavior. Different
building blocks for this covert channel have been investigated,
for instance, monitors [30, 44], memory accesses [29, 68, 76],

or peripheral devices [31]. For instance, the fastest proposed
EM covert channel, BitJabber, achieves a bitrate of up to
300 kbps by modulating signals generated by the DRAM
clock [76]. Similarly, EMLoRa boasts a range of up to 250 m
by modulating memory accesses [68].

The requirements for an EM covert channel for transient
execution attacks, on the other hand, are vastly different. The
primary constraint is the time window during which a bit
can be transmitted. As a result, our work necessarily builds
upon short-lived micro-architectural effects, which can only
be observed with very localized EM measurements with a
minimal distance between the probe and the IC.

11 Conclusion

In this paper, we investigated whether transient execution
is amenable to leaking secret information through physical
side effects such as EM emanations. Despite the constrained
transient window, we identified and evaluated suitable code
patterns based on secret-dependent instruction timing and
control flow. Although our attacks require physical access,
they do not rely on decoding secrets from particular micro-
architectural elements, circumventing countermeasures that
capitalize on this property. Moreover, by assuming access
through an interface, SPECTREM may overcome the require-
ment of executing attacker code altogether.

We demonstrated the feasibility of the proposed attacks on
the Arm Cortex-A72. Our evaluation confirmed that transient
execution attacks relying on electromagnetic covert channels
form a practical attack, even in an unsupervised setting, where
no traces are required to train the classifier. SPECTREM man-
aged a bitrate of 366 bit/s at <0.01 % BER for the instruction
gadget and 350 bit/s at a BER of 0.769 % for the control
flow gadget. MELTEMDOWN, on the other hand, managed
241 bit/s at a BER of 0.00687 %. To our knowledge, these at-
tacks are the first to confirm the threat of physical side-channel
leakage during transient execution.

Acknowledgments

We thank the anonymous USENIX Security reviewers and our
shepherd for their valuable and constructive feedback. This
research is partially funded by the European Research Council
(ERC #101020005 BELFORT) and the Flemish Government
through the FWO project TRAPS. It was also supported by the
CyberSecurity Research Flanders (#VR20192203), Horizon
Europe (#101070008 ORSHIN), and the Research Fund KU
Leuven. Antoon Purnal is supported by a grant of the Research
Foundation - Flanders (FWO).

14

References

[1] Sam Ainsworth and Timothy M. Jones. Muontrap: Preventing
cross-domain spectre-like attacks by capturing speculative
state. In IEEE Annual International Symposium on Computer
Architecture (ISCA), 2020.

[2] Arm Limited. CORTEX-A72. https://www.arm.com/
products/silicon-ip-cpu/cortex-a/cortex-a72. Ac-
cessed: May, 2022.

[3] Arm Limited. Cortex®A72 Software Optimization Guide,
2015.

[4] Arm Limited. ARM® Cortex®-A72 MPCore Processor Tech-
nical Reference Manual, 2016. Revision r0p3.

[5] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid
Verbauwhede. DPA, bitslicing and masking at 1 ghz. In
Cryptographic Hardware and Embedded Systems (CHES),
2015.

[6] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and
Radu Teodorescu. SpecShield: Shielding speculative data
from microarchitectural covert channels. In IEEE Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT), 2019.

[7] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos,
and Cristiano Giuffrida. Branch history injection: On the
effectiveness of hardware mitigations against cross-privilege
spectre-v2 attacks. In USENIX Security Symposium, 2022.

[8] Arthur Beckers, Josep Balasch, Benedikt Gierlichs, and Ingrid
Verbauwhede. Design and implementation of a waveform-
matching based triggering system. In Constructive Side-
Channel Analysis and Secure Design (COSADE), 2016.

[9] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi, Math-
ias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting
speculative execution through port contention. In ACM
Conference on Computer and Communications Security
(CCS), 2019.

[10] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the intel SGX kingdom with transient out-
of-order execution. In USENIX Security Symposium, 2018.

[11] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar,
Daniel Gruss, and Frank Piessens. LVI: hijacking transient
execution through microarchitectural load value injection. In
IEEE Symposium on Security and Privacy (S&P), 2020.

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry
Evtyushkin, and Daniel Gruss. A systematic evaluation of
transient execution attacks and defenses. In USENIX Security
Symposium, 2019.

[13] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles
Barthe, and Deian Stefan. SoK: Practical foundations for
software spectre defenses. In IEEE Symposium on Security
and Privacy (S&P), 2022.

[14] Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan Yao.
Branchspec: Information leakage attacks exploiting specu-
lative branch instruction executions. In IEEE International
Conference on Computer Design (ICCD), 2020.

[15] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum:
Minimal hardware extensions for strong software isolation. In
USENIX Security Symposium, 2016.

[16] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien
Bardin, Tamara Rezk, and Frank Piessens. PROSPECT: Prov-
ably secure speculation for the constant-time policy. In
USENIX Security Symposium, 2023.

[17] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. Chunked-cache:
On-demand and scalable cache isolation for security architec-
tures. In Network and Distributed System Security Symposium
(NDSS), 2022.

[18] Richard O. Duda and Peter E. Hart. Pattern classification
and scene analysis. A Wiley-Interscience publication. Wiley,
1973.

[19] Agner Fog. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs. Technical University of Denmark, 2022.

[20] Jacob Fustos, Michael Garrett Bechtel, and Heechul Yun. Spec-
treRewind: Leaking secrets to past instructions. In ACM Work-
shop on Attacks and Solutions in Hardware Security Workshop
(ASHES@CCS), 2020.

[21] Jacob Fustos, Farzad Farshchi, and Heechul Yun. Spectreguard:
An efficient data-centric defense mechanism against spectre
attacks. In ACM Design Automation Conference (DAC), 2019.

[22] Joseph Galbraith and Oskari Saarenmaa. SSH File Transfer
Protocol. Internet-Draft draft-ietf-secsh-filexfer-13, Internet
Engineering Task Force, July 2006. Work in Progress.

[23] Karine Gandolfi, Christophe Mourtel, and Francis Olivier.
Electromagnetic analysis: Concrete results. In Cryptographic
Hardware and Embedded Systems (CHES), 2001.

[24] Daniel Genkin, Noam Nissan, Roei Schuster, and Eran Tromer.
Lend me your ear: Passive remote physical side channels on
PCs. In USENIX Security Symposium, 2022.

[25] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran
Tromer. Stealing keys from PCs using a radio: Cheap elec-
tromagnetic attacks on windowed exponentiation. In Crypto-
graphic Hardware and Embedded Systems (CHES), 2015.

[26] Cosmin Gorgovan. spec_poc_arm. https://github.com/
gorgovan2018specpocarm/spec_poc_arm, 2018.

[27] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke,
and Andrés Sánchez. Spectector: Principled detection of spec-
ulative information flows. In IEEE Symposium on Security
and Privacy (S&P), 2020.

[28] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo
Wang, Meng Wu, and Zhiqiang Zuo. SpecuSym: Speculative
symbolic execution for cache timing leak detection. In ACM
International Conference on Software Engineering (ICSE),
2020.

15

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a72
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a72
https://github.com/gorgovan2018specpocarm/spec_poc_arm
https://github.com/gorgovan2018specpocarm/spec_poc_arm

[29] Mordechai Guri, Assaf Kachlon, Ofer Hasson, Gabi Kedma,
Yisroel Mirsky, and Yuval Elovici. GSMem: Data exfiltration
from air-gapped computers over GSM frequencies. In USENIX
Security Symposium, 2015.

[30] Mordechai Guri, Gabi Kedma, Assaf Kachlon, and Yuval
Elovici. AirHopper: Bridging the air-gap between isolated
networks and mobile phones using radio frequencies. In IEEE
International Conference on Malicious and Unwanted Soft-
ware: The Americas (MALWARE), 2014.

[31] Mordechai Guri, Matan Monitz, and Yuval Elovici. USBee:
Air-gap covert-channel via electromagnetic emission from
USB. In IEEE Conference on Privacy, Security and Trust
(PST), 2016.

[32] Mordechai Guri, Boris Zadov, Dima Bykhovsky, and Yuval
Elovici. PowerHammer: Exfiltrating data from air-gapped
computers through power lines. IEEE Transactions on Infor-
mation Forensics and Security, 2020.

[33] Jann Horn. Speculative execution, variant 4: speculative store
bypass. https://bugs.chromium.org/p/project-zero/
issues/detail?id=1528, 2018.

[34] Guangyuan Hu, Zecheng He, and Ruby B. Lee. SoK: Hard-
ware defenses against speculative execution attacks. In Inter-
national Symposium on Secure and Private Execution Envi-
ronment Design (SEED), 2021.

[35] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. KASPER: Scanning for gen-
eralized transient execution gadgets in the linux kernel. In
Network and Distributed System Security Symposium (NDSS),
2022.

[36] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh,
Chengyu Song, Dmitry Evtyushkin, Dmitry Ponomarev, and
Nael B. Abu-Ghazaleh. SafeSpec: Banishing the spectre of
a meltdown with leakage-free speculation. In ACM Design
Automation Conference (DAC), 2019.

[37] Sungkeun Kim, Farabi Mahmud, Jiayi Huang, Pritam Ma-
jumder, Neophytos Christou, Abdullah Muzahid, Chia-Che
Tsai, and Eun Jung Kim. ReViCe: Reusing victim cache to
prevent speculative cache leakage. In IEEE Secure Develop-
ment (SecDev), 2020.

[38] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe,
Srinivas Devadas, and Joel S. Emer. DAWG: A defense against
cache timing attacks in speculative execution processors. In
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[39] Paul Kocher. Spectre mitigations in Microsoft’s C/C++
compiler. https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html, 2018.
Accessed: March, 2022.

[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. In IEEE
Symposium on Security and Privacy (S&P), 2019.

[41] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Advances in Cryptology (CRYPTO), 1999.

[42] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Ro-
hatgi. Introduction to differential power analysis. Journal of
Cryptographic Engineering, 1(1):5–27, 2011.

[43] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh,
Chengyu Song, and Nael B. Abu-Ghazaleh. Spectre returns!
Speculation attacks using the return stack buffer. In USENIX
Workshop on Offensive Technologies (WOOT), 2018.

[44] Markus G. Kuhn and Ross J. Anderson. Soft tempest: Hidden
data transmission using electromagnetic emanations. In Infor-
mation Hiding, volume 1525 of Lecture Notes in Computer
Science, pages 124–142. Springer, 1998.

[45] Corentin Lavaud, Robin Gerzaguet, Matthieu Gautier, Olivier
Berder, Erwan Nogues, and Stéphane Molton. Whispering
devices: A survey on how side-channels lead to compromised
information. Journal of Hardware Systems Security, 2021.

[46] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-che Tsai, and
Raluca Ada Popa. An off-chip attack on hardware enclaves
via the memory bus. In USENIX Security Symposium, 2020.

[47] Moritz Lipp, Vedad Hadzic, Michael Schwarz, Arthur Perais,
Clémentine Maurice, and Daniel Gruss. Take A Way: Explor-
ing the security implications of amd’s cache way predictors.
In ACM Asia Conference on Computer and Communications
(AsiaCCS), 2020.

[48] Moritz Lipp, Andreas Kogler, David F. Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and Daniel
Gruss. PLATYPUS: Software-based power side-channel at-
tacks on x86. In IEEE Symposium on Security and Privacy
(S&P), 2021.

[49] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Man-
gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown: Reading kernel memory from user
space. In USENIX Security Symposium, 2018.

[50] Chris M. Lonvick and Tatu Ylonen. The Secure Shell (SSH)
Connection Protocol. RFC 4254, January 2006.

[51] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir
Weisse, Satish Narayanasamy, and Baris Kasikci. DOLMA:
Securing speculation with the principle of transient non-
observability. In USENIX Security Symposium, 2021.

[52] Giorgi Maisuradze and Christian Rossow. ret2spec: Specula-
tive execution using return stack buffers. In ACM Conference
on Computer and Communications Security (CCS), 2018.

[53] Andrea Mambretti, Matthias Neugschwandtner, Alessandro
Sorniotti, Engin Kirda, William K. Robertson, and Anil Kur-
mus. Speculator: A tool to analyze speculative execution
attacks and mitigations. In ACM Annual Computer Security
Applications Conference (ACSAC), 2019.

[54] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks - revealing the secrets of smart cards.
Springer, 2007.

[55] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan,
Christian Müller, Lothar Thiele, and Srdjan Capkun. Thermal
covert channels on multi-core platforms. In USENIX Security
Symposium, 2015.

16

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

[56] Colin O’Flynn and Zhizhang (David) Chen. Side channel
power analysis of an AES-256 bootloader. In IEEE Cana-
dian Conference on Electrical and Computer Engineering
(CCECE), 2015.

[57] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and
Christof Fetzer. Specfuzz: Bringing spectre-type vulnerabili-
ties to the surface. In Srdjan Capkun and Franziska Roesner,
editors, USENIX Security Symposium, 2020.

[58] Siddika Berna Örs, Elisabeth Oswald, and Bart Preneel. Power-
analysis attacks on an FPGA - first experimental results. In
Cryptographic Hardware and Embedded Systems (CHES),
2003.

[59] Duy-Phuc Pham, Damien Marion, Matthieu Mastio, and An-
nelie Heuser. Obfuscation revealed: Leveraging electromag-
netic signals for obfuscated malware classification. In ACM
Annual Computer Security Applications Conference (ACSAC),
2021.

[60] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede. Systematic analysis of randomization-based pro-
tected cache architectures. In IEEE Symposium on Security
and Privacy (S&P), 2021.

[61] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng
Li, Heng Yin, and Tao Wei. SpecTaint: Speculative taint analy-
sis for discovering spectre gadgets. In Network and Distributed
System Security Symposium (NDSS), 2021.

[62] Jean-Jacques Quisquater and David Samyde. Electromagnetic
analysis (EMA): Measures and counter-measures for smart
cards. In E-smart, volume 2140 of Lecture Notes in Computer
Science, pages 200–210. Springer, 2001.

[63] Moinuddin K. Qureshi. Ceaser: Mitigating conflict-based
cache attacks via encrypted-address and remapping. In
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[64] Moinuddin K. Qureshi. New attacks and defense for encrypted-
address cache. In International Symposium on Computer
Architecture (ISCA), 2019.

[65] Thomas Roche, Victor Lomné, Camille Mutschler, and Lau-
rent Imbert. A side journey to Titan. In USENIX Security
Symposium, 2021.

[66] Gururaj Saileshwar and Moinuddin K. Qureshi. CleanupSpec:
An "undo" approach to safe speculation. In IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2019.

[67] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters,
and Daniel Gruss. NetSpectre: Read arbitrary memory over
network. In European Symposium on Research in Computer
Security (ESORICS), 2019.

[68] Cheng Shen, Tian Liu, Jun Huang, and Rui Tan. When LoRa
meets EMR: electromagnetic covert channels can be super
resilient. In IEEE Symposium on Security and Privacy (S&P),
2021.

[69] M. Caner Tol, Berk Gülmezoglu, Koray Yurtseven, and Berk
Sunar. FastSpec: Scalable generation and detection of spectre
gadgets using neural embeddings. In IEEE European Sympo-
sium on Security and Privacy (EuroS&P), 2021.

[70] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas,
Tulika Mitra, and Abhik Roychoudhury. KLEESpectre: De-
tecting information leakage through speculative cache attacks
via symbolic execution. ACM Transactions on Software Engi-
neering and Methodology, 2020.

[71] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. oo7: Low-overhead
defense against spectre attacks via program analysis. IEEE
Transactions on Software Engineering, 2021.

[72] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch,
and Baris Kasikci. NDA: preventing speculative execution
attacks at their source. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2019.

[73] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache:
Thwarting cache attacks via cache set randomization. In
USENIX Security Symposium, 2019.

[74] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morri-
son, Christopher W. Fletcher, and Josep Torrellas. InvisiSpec:
Making speculative execution invisible in the cache hierarchy.
In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[75] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A
high resolution, low noise, L3 cache side-channel attack. In
USENIX Security Symposium, 2014.

[76] Zihao Zhan, Zhenkai Zhang, and Xenofon D. Koutsoukos.
BitJabber: The world’s fastest electromagnetic covert chan-
nel. In IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2020.

A Arm Cortex-A72 Transient Window Size

We extend the Speculator tool [53] to AArch64 and use it to
measure the number of available instructions within the tran-
sient window on the Arm Cortex-A72. Speculator uses the
CPU’s hardware counters to determine the extent of the tran-
sient execution using marker instructions that appear in said
counters. By iteratively increasing the number of instructions
between the trigger instruction and the marker instruction,
Speculator can determine which instructions were executed
transiently.
Methodology. We construct two test programs, one for Spec-
tre and one for Meltdown, to measure the transient window
size resulting from both branch mispredictions and excep-
tions. To determine whether all inserted instructions were, in
fact, executed transiently, the floating-point move immediate
instruction (fmov) is used as a marker instruction and placed
after the inserted instructions. This fmov instruction incre-
ments the VFP_SPEC performance counter, which counts the
floating point operations that are executed transiently.

The Speculator tool analyzes both test snippets by inserting
up to 130 addition or unsigned division instructions. Since
the number of clock cycles occupied by an unsigned division
differs based on the operands, three different operands are

17

Number of inserted instructions

F
ra
ct
io
n
m
a
rk
er

p
re
se
n
t

0 10 20 30 40 50 60
0

0.5

1

S
p
ectre

0 10 20 30 40 50 60
0

0.5

1

M
eltd

ow
n

add

udiv (4 clock cycles)

udiv (6 clock cycles)

udiv (20 clock cycles)

Figure 6: The fraction out of the 1000 runs for which the
marker instruction was recorded by the performance counter
VFP_SPEC, for Spectre (top) and Meltdown (bottom).

used such that the instruction takes either 4, 6, or 20 clock
cycles. In all cases, the instructions only have a dependency
on the transient load. This avoids stalls in the pipeline that
might reduce the measured transient window size.

Note that this experiment aims to measure the window size
in the best-case scenario, not necessarily in a realistic one.
This provides an upper bound on the number of instructions
that can be considered for an EM covert channel.
Results. Figure 6 shows the results of this analysis up to 64
instructions. For each number of inserted instructions, the
fraction out of 1000 runs for which the marker was detected
is plotted, both for Spectre (top) and for Meltdown (bottom).

For Spectre, the rate of additions drops off sharply after 59
inserted instructions, indicating the transient window size is
limited by the micro-architectural elements. When inserting
unsigned divisions, on the other hand, the transition occurs
earlier, though not as sharply, indicating that the limiting fac-
tor here is the time constraint.

The results from the Meltdown snippet are shown in Fig-
ure 6 (bottom). Similar to the results for the Spectre attack, the
additions see a sharp drop-off, this time after 58 instructions.
Due to a pointer chase, the transient window is larger than in
the case of the Spectre attack, which results in the divisions
that occupy 4 and 6 clock cycles also displaying this behavior.
The only case that does not reach the upper bound dictated
by the micro-architectural elements is the unsigned division
instruction that occupies 20 clock cycles.

These results give a rough estimate of the number of instruc-
tions that can be used in an EM covert channel. They indicate
that the processor—in the used configuration—allows for up
to approximately 60 transient instructions, though this number
decreases the more cycles an instruction takes.

12 4 8 12 16 24 32 40 48 56 64 72

Number of udiv instructions

10!5

10!4

10!3

10!2

10!1

100

B
E
R

Setup B | GMM

Setup B | MLP

Figure 7: BER for varying number of udiv instructions.

B MLP Network Architecture

Table 4: MLP network for supervised classification, after
Pham et al. [59].

Layer Size Activation

Input 1000 –
Dense 500 ReLu
Dense 200 ReLu
Dense 100 ReLu
Dense 2 Softmax

C Instruction Dependence

An important parameter when considering instruction gadgets
is the number of instructions with operand-dependent timings
within the gadget. Intuitively, the more such instructions are
present, the larger the leakage, and thus the easier it should
become to extract the value. This experiment, therefore, aims
to determine how the number of instructions with operand-
dependent timings affects the bit error rate and how many are
required to get an acceptable BER from a single trace.
Methodology. We consider various numbers of udiv instruc-
tions: 1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, and 72. For each
case, 81920 traces are collected on setup B in five batches of
16384. The BERs are computed using an MLP (supervised)
and GMM clustering (unsupervised). Note that the MLP is
pre-trained for a fixed number (i.e., 64) of udivs. Five training
packets are used to mistrain the branch predictor.
Results. Figure 7 depicts the results. As expected, the bit error
rate declines with an increasing number of udiv instructions.
It is close to 50 % for less than 8 division instructions, sug-
gesting that the leakage for those cases is not strong enough
to extract the secret bit with a single trace. After around 48
instructions, the BER levels off, indicating that no more in-
structions could be executed in the transient window.

18

	Introduction
	Preliminaries
	Physical Side Channels
	Out-of-Order Execution and Speculation
	Transient Execution Attacks
	Spectre
	Meltdown
	Gadgets

	Electromagnetic Covert Channel Under Transient Window Constraints
	Operand-Dependent Instruction Timing
	Control Flow Dependency

	Attack Overview
	Threat Model
	SpectrEM
	Preparing the Micro-Architectural State

	MeltEMdown

	Experimental Setup and Methodology
	Experimental Setup
	Target Device
	Measurement Setup

	Methodology
	Proof-of-Concept Implementations
	Data Collection
	Bit Extraction

	Evaluation
	SpectrEM Attack
	Probe Position
	SpectrEM Performance

	MeltEMdown Attack

	Reducing Evaluation Assumptions
	Frequency Scaling
	Core Affinity
	Flushing

	Case Study
	SSH Server
	SFTP Server
	Limitations

	Discussion
	Related Work
	Conclusion
	Arm Cortex-A72 Transient Window Size
	MLP Network Architecture
	Instruction Dependence

