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Abstract. When deployed in a potentially hostile environment, security-
critical devices are susceptible to physical attacks. Consequently, crypto-
graphic implementations need to be protected against side-channel anal-
ysis, fault attacks and attacks that combine both approaches. CAPA
(CRYPTO 2018) is an algorithm-level combined countermeasure, based
on MPC, with provable security in a strong attacker model. A key chal-
lenge for combined countermeasures, and CAPA in particular, is the
implementation cost. In this work, we use CAPA to obtain the first
hardware implementations of Keccak (SHA-3) with resistance against
combined side-channel and fault attacks. We systematically explore the
speed-area trade-off and show that CAPA, in spite of its algorithmic
overhead, can be very fast or reasonably small. In fact, for the standard-
ized Keccak-f [1600] instance, our low-latency version is nearly twice
as fast as the previous implementations that only consider side-channel
security, at the cost of area and randomness consumption. For all four
presented designs, the protection level for side-channel and fault attacks
can be scaled separately and to arbitrary order. To evaluate the physical
security, we assess the side-channel leakage of a representative second-
order secure implementation on FPGA. In addition, we experimentally
validate the claimed fault detection probability.

Keywords: Side-channel analysis · Fault attacks · Masking · Combined
countermeasure · Keccak · SHA-3 · CAPA

1 Introduction

Computing devices implement cryptographic algorithms. Traditionally, these de-
vices are assumed to operate out of the attacker’s reach. In practice, however,
this condition is not upheld. Next to cryptanalytic attacks, the adversary can
target the implementation of the algorithm directly. On the one hand, an ad-
versary can employ side-channel analysis (SCA), which exploits the unintended
leakage of sensitive information through one or more side-channels. Measurable
physical channels include timing [28], power consumption [29] and electromag-
netic emanation [16]. On the other hand, an adversary can mount devastating
attacks by actively injecting faults in the cryptographic computations [12].

To thwart SCA attacks, masking [11,13,18,20,24,32,35,37] is a provably secure
and scalable countermeasure. By randomizing the intermediate values processed
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by the cryptographic algorithm, masking decouples the side-channel information
from the actual sensitive values.

The lion’s share of countermeasures against fault attacks perform some re-
dundant computations that allow the detection of faults. Proposed solutions
include duplication of the computations in space or time [3], the use of error-
detecting codes [5,26,30] and recomputing with permuted operands [22,34]. While
such approaches are intuitively sound, they suffer from two fundamental prob-
lems. To begin with, if the redundancy is predictable, the attacker can evade
detection by introducing well-crafted faults. Moreover, the detection mechanism
itself constitutes an interesting point of attack [27,39]. Conceptually different
from detection, infection [17,40] avoids the vulnerable check-before-output pro-
cedure. Instead, injected faults perturb the computation in such a way that the
cryptographic output reveals no information about the implementation’s secrets.

An attacker capable of separate side-channel and fault attacks, can also
jointly exploit both attack vectors. Hence, cryptographic implementations also
need to be protected against combined attacks. The combined countermeasures
Private Circuits II [14,23] and ParTI [38] are constructed by combining a
masking scheme with fault-detecting redundancy. As a result, the fundamen-
tal problems of fault detection apply equally well to these schemes. The Capa
[36] and M&M [15] countermeasure methodologies avoid the latter problem by
employing information-theoretic (i.e. perfectly unpredictable) MAC tags. Capa
draws inspiration from advances in the field of secure multi-party computation
(MPC), resulting in provable security against combined physical attacks in a
strong adversarial model. M&M is much cheaper to implement than Capa, at
the expense of a weaker attacker model. It additionally addresses the fundamen-
tal problem of fault checking by using the aforementioned infection strategy.

A key challenge for combined countermeasures is the implementation cost.
We contribute to the evaluation of combined countermeasures by investigating
the hardware trade-offs that govern the widely used Keccak permutations [6]
when protecting against combined physical attacks. We instantiate Capa be-
cause it is the most resource-intensive methodology, but the implementation
strategies and conclusions carry over to other (combined) countermeasures for
which multiplications dominate the implementation cost. By extension, this work
also covers the authenticated encryption ciphers Ketje [8] and Keyak [9].

Our contribution. In this work, we present the first implementations of Kec-
cak (SHA-3) with resistance to combined physical attacks, where previous works
[1,7,10,21] have considered only side-channel analysis. We systematically explore
the speed-area trade-off in hardware, yielding a suite of protected implementa-
tions. We show that, in spite of the extremely strong adversarial model, Capa
can be very fast or reasonably compact. In particular, our low-latency imple-
mentation is almost twice as fast as all existing protected Keccak-f [1600] im-
plementations. As a bonus, we discover a generic implementation optimization
of the Capa preprocessing stage. We illustrate and experimentally validate the
overhead cost of the countermeasure as a function of the Keccak permutation
width and the side-channel and fault security parameters.
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2 Preliminaries

2.1 Keccak

Best known for their standardization as Sha-3, Keccak [6] is a family of sponge
functions, based on the Keccak-f [b] permutations. These permutations manip-
ulate a state of b elements inGF (2) (bits) for b ∈ {25, 50, 100, 200, 400, 800, 1600}
and consist of the iterative application of a round function R. Specifically, each
of the seven instances of Keccak-f [b] has a fixed number of rounds nr = 12+2l,
where l = log2(

b
25 ). The round function R, in turn, is defined by the consecutive

application of five step mappings: R = ι ◦ χ ◦ π ◦ ρ ◦ θ.
The effect of the step mappings is best explained by considering the state

as a three-dimensional array S(x, y, z) of dimensions 5 × 5 × w, where w = b
25 .

This paper employs the established naming convention as introduced in [6]. In
particular, we adopt the nomenclature of planes, rows, lanes, slices and columns
to denote specific parts of the state.

The nonlinear part of the Keccak-f [b] permutation is confined to the χ step
mapping, which is an S-box operating on 5-bit rows. Its algebraic degree is two,
which is an attractive property in the context of masked implementations. The
other step mappings are linear. For each column of the state, the θ mapping
adds the parity of two neighbouring columns. The ι step mapping adds a round
constant to one of the lanes. Finally, π reorganizes the lanes in the state and ρ
shifts the bits within one lane.

2.2 CAPA: a combined countermeasure against physical attacks

Capa [36] is an algorithm-level countermeasure that achieves resistance against
attacks that simultaneously exploit side-channel leakage and fault injection. As
such, it claims security in the tile-probe-and-fault adversarial model [36]. We
consider a computing architecture that has been partitioned in d tiles, resulting
in side-channel security up to order d − 1. Let Ti denote one such tile and T
the set of all tiles such that T =

⋃d−1
i=0 Ti. The secure evaluation of an arbitrary

arithmetic circuit occurs in two distinct stages. The evaluation stage comprises
the actual cryptographic computations. The security of this stage depends on
the presence of auxiliary random values, generated in the preprocessing stage.

The intermediate values of the cryptographic computation are referred to
as sensitive variables x, y, z. The preprocessing stage generates auxiliary values
a, b, c. Every sensitive or auxiliary value x ∈ Fq is shared as x = (x0, x1, . . . , xd−1)
where each tile Ti holds one share xi and

∑
xi = x. The same sharing applies to

every auxiliary value a ∈ Fq. To detect faults injected in the evaluation stage, a
MAC key α ∈ Fq, drawn uniformly at random, authenticates every sensitive or
auxiliary value x with a multiplicative tag τx = α · x, shared between the tiles
as τx = (τx0 , τ

x
1 , . . . , τ

x
d−1). Note that α authenticates the secret value itself, not

the shares. To protect α from being observed by the attacker, it is also shared
between the tiles as (α0, α1, . . . , αd−1). As α is secret, an attacker that alters a
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sensitive value is generally unable to forge a valid tag. The MAC key α changes
for every new execution of the cryptographic algorithm.

To obtain a scalable security level against fault attacks, Capa considers m
independent MAC keys α[j], such that each sensitive value x is accompanied by
m tags τx[j], for j = 0, 1, . . . ,m− 1. Because Keccak operates in Fq = GF (2),
the Capa fault detection probability in this work is 1− 2−m.

Evaluation stage. Next to establishing a shared representation 〈x〉 = (x, τx)
of every input value x of the arithmetic circuit, Capa defines a computing pro-
cedure that yields a shared representation of the output. Linear operations, such
as the parity additions in θ or the addition of the round constant in the ι step
mapping, are easily evaluated by isolated computations in every tile. Nonlinear
operations, like field multiplications, are more difficult to implement securely. In
the Capa methodology, multiplications require communication between the tiles
and the consumption of an auxiliary triple 〈a〉, 〈b〉, 〈c〉 that satisfies c = a · b.

To be secure in the presence of glitches, all communication between the tiles
has to be synchronized by registers. Referring to [36] for the details, this implies
that a multiplication operation has a two-cycle latency. However, multiplications
can be organised in a pipeline, reducing the impact on the throughput of the
implementation. To detect faults injected in the evaluation stage, every multi-
plication also features a check of the MAC tag. In an optimized implementation,
this MAC check completes one cycle later than its corresponding multiplication.

Preprocessing stage. Every multiplication instance in the evaluation stage
incurs a corresponding preprocessing entity that produces the necessary aux-
iliary triple. In what follows, such an entity is denoted by a triple factory.
The generation of an auxiliary triple goes as follows. First, the factory draws
a = (a0, a1, ..., ad−1) and b = (b0, b1, ..., bd−1) uniformly at random from Fdq .
To this end, every tile Ti randomly generates their share ai, bi. Next, the tiles
securely compute a shared representation c = (c0, c1, ..., cd−1) of c = a · b by
multiplying a and b with a passively secure shared multiplier [11,19,33,35]. The
choice of multiplier is free, as long as the partition in tiles can be superimposed.
In this work, we instantiate the DOM multiplier [19] because of its low random-
ness consumption. Shared multiplications of resp. a, b, c with the MAC key α
in turn yield the tags τa, τb and τc. Note that each new triple thus requires
(1+3m) shared multiplications. To detect faults in the preprocessing and hence
verify that the Beaver triples are genuine, the factory sacrifices another triple
satisfying the same relation. This procedure is explained in more detail in [36].

3 Protected implementations of Keccak

Due to the substantial area and randomness cost of nonlinear operations in the
Capa methodology, the selection of the number of S-boxes is a crucial design
decision. In this work, we explore the speed-area trade-off by presenting four
secure designs of Keccak-f [b]: Blaze, Fast, Fur and Kit.
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(a) (b) (c) (d)

Fig. 1: Simultaneous processing of χ for the different designs.
(a) Blaze. (b) Fast. (c) Fur. (d) Kit

The starting point for each design is the number of χ operations computed
in parallel. Fig. 1 marks the bits of the state that are treated simultaneously in
the χ mapping. The design choices for the other step mappings follow from the
speed-area characteristics implied by the number of S-boxes.

3.1 Evaluation stage

Blaze. The Blaze design targets high throughput. Fig. 2 (left) depicts a
high-level overview of this round-based architecture. The delay elements in χ,
unavoidable to be secure in the presence of glitches, are used as pipelining regis-
ters. Combinational logic implements the other step mappings. In the integrated
π ◦ ρ ◦ θ stage, π and ρ are simple wirings.

The first cycle initiates the χ pipeline and hence only computes π ◦ρ◦θ. The
subsequent cycles compute π ◦ ρ ◦ θ ◦ ι ◦ χ and the permutation finishes in the
final cycle with ι ◦ χ. Before the result can be shown at the output, the MAC
tag check pertaining to the final computation cycle needs to be performed.

Fig. 2: High-level architectures for Blaze (left) and Fast (right)
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Fast. The baseline of the Fast design is a χ mapping that treats half of the
state at a time. Fig. 2 (right) presents the high-level architecture for Fast. The
ι ◦χ stage partitions the state in two equal parts by treating the first w/2 slices
in the first cycle and the remaining w/2 slices in the second cycle. The ι mapping
follows the pace dictated by χ and adds the round constant in two parts. Since
the inter-slice shifts in ρ do not match with the slice-based partition for χ, the
π ◦ ρ ◦ θ stage must consider the entire state at once.

The computation of one round takes three cycles. In the first cycle, the first
part of the state is loaded in the ι ◦χ pipeline. During the second cycle, the now
completed first part is written in the state register while the remaining part of
the state enters the ι ◦ χ pipeline. In the third cycle, the now completed second
part of the state also ends up in the state register. As with the Blaze design,
one extra cycle is needed to verify the tags of the last ι ◦ χ.

Fur. As shown in Fig. 1, the baseline for the Fur design is a slice-based treat-
ment of χ. Slice-based designs naturally lead to smaller implementations owing
to the reuse of functional units. Moreover, a great deal of multiplexers are saved
because only one slice during χ is written at once, as opposed to the entire state.
The latter insight is key, given that storing the state dominates the implemen-
tation size as we move towards smaller designs. Although the architecture is not
exactly the same, we acknowledge that a slice-based paradigm for Keccak has
been reported previously [25].

Schematically represented in Fig. 3, the slice-based ι ◦χ stage takes one slice
at a time, corresponding to one bit in every lane. At the same time, the slices
are shifted and the result is written in the newly vacant position resulting from
the shift. Because of the shift, the next slice is now in place to be processed.
After repeating this process for all the slices, the results end up in the correct
location. The π ◦ ρ ◦ θ mapping considers the whole state at once and its result
is written to the state register to allow χ to be performed in a slice-based way.
Due to its slice-based nature, χ takes w + 1 cycles, where the additional cycle
stems from starting up the pipeline. One cycle suffices for π ◦ ρ ◦ θ and the ι
mapping is computed concurrently with χ. In total, Fur takes w+ 2 cycles per
round, where one cycle for the MAC check must be added after the final round.

Kit. The Kit design performs every step mapping in an iterated fashion and
considers the minimal number of χ modules, i.e. one. In particular, Kit employs
the slice-based paradigm for π ◦ θ and ρ and even a row-based paradigm for χ.
Row-based processing can be seen as an even more area-efficient extension of
slice-based processing, resulting in the smallest design of this paper.

The Kit architecture comprises three distinct stages: π ◦ θ, ρ and ι ◦χ. Note
that this interchanges the order of ρ and π. The π ◦ θ stage is slice-based and
implemented as in [10]. When processing one slice, its column parities are pre-
computed for the next slice. The first slice features a special treatment as it
requires the parities of the columns of the last slice. As a result, it is processed
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Fig. 3: Slice-based processing for the ι ◦ χ stage in Fur

together with the last slice. The inter-slice diffusion in the ρ stage is also im-
plemented iteratively. In particular, the lanes are shifted circularly until they
reach the configuration dictated by ρ. It should be mentioned that a slice-based
ρ mapping has been reported previously [21].

Fig. 4: Row-based processing for the ι ◦ χ stage in Kit

Fig. 4 clarifies the row-based paradigm. The ι ◦ χ stage takes one row and
shifts the remaining rows in the plane to fill the newly vacant position. In turn,
this leaves a vacancy at the last row, which is filled by the first row of the next
plane. Continuation of this reasoning results in a vacancy in the last row of the
final plane, where the ι ◦ χ output is written. This process is repeated for every
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Table 1: Summary of the designs, generic in the permutation width b. Recall
that w = b/25 and that nr denotes the number of rounds.
Design # S-boxes (χ) # Factories Cycle count

Blaze b/5 b nr + 2
Fast b/10 b/2 3 · nr + 2
Fur 5 25 (w + 1) · nr + 1
Kit 1 5 (7w + 1) · nr + 1

row. Care should be taken that the round constant is only added to the relevant
lane. The row-based χ stage takes 5 · w + 1 cycles to treat the entire state. The
other stages are slice-based and hence require w cycles each. In total, each round
takes (7w + 1) cycles.

Pushing the area limits. Instead of providing a factory for every shared
multiplication, five in the case of Kit, we can instantiate the design with only
one factory. This implies that the evaluation stage waits for the preprocessing
stage. Essentially, this is a bit-based paradigm, where only one bit of the state is
processed at a time. As a result, the preprocessing stage is five times smaller and
the design is five times slower. Given that the preprocessing stage is not dominant
in size for many instances of Kit, this design has not been implemented.

Summary of the designs. Table 1 summarizes the amount of S-boxes and
factories of every implementation, and the number of cycles they take to execute.

3.2 Preprocessing stage

In the computing procedure for the Beaver multiplication [36], the auxiliary value
〈c〉 is only needed one cycle later than its corresponding 〈a〉 and 〈b〉. However, a
naive implementation of the preprocessing stage provides 〈a〉, 〈b〉 and 〈c〉 at the
same time. By tolerating a one-cycle lag of the auxiliary values 〈c〉 with respect
to 〈a〉 and 〈b〉 values, as depicted in Fig. 5, we save several storage elements at
the boundary between evaluation and preprocessing stage. When the number of
factories is large, this algorithm-independent optimization incurs a considerable
resource saving.

Fig. 5: The one-cycle lag of 〈c〉 w.r.t 〈a〉 and 〈b〉
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4 Implementation results and cost scalability

Our synthesis results are obtained with Synopsys Design Compiler N-2017.09
in conjunction with the freely available NANGATE 45nm Open Cell technology
library [31]. The compilation is done with the exact_map option enabled and
clock gating disabled to prevent cross-tile optimizations.

Table 2: Synthesis results for Keccak-f [200]
Keccak-f [200] in NANGATE 45nm (m = 2)

AREA [kGE] Rand. fmax FoMEvaluation Preprocessing Total
Design Order χ θ State Σ Gen. Ver. Σ [bpc] [MHz] [kbps/GE]

1 73.6 4.8 12.5 94.3 114.8 103.0 217.8 312.1 4400 806 25.8
Blaze 2 117.4 7.2 18.7 148.5 261.7 166.2 427.9 576.4 10800 806 14.0

3 166.0 9.6 25.0 207.4 469.5 237.6 707.1 914.5 20000 751 8.2

1 36.8 4.8 11.1 56.1 57.4 51.5 108.9 165.0 2200 1333 28.9
Fast 2 58.8 7.2 16.6 87.7 130.8 83.1 213.9 301.6 5400 1190 14.1

3 83.1 9.6 22.2 121.6 234.7 118.8 353.5 475.2 10000 1190 8.9

1 9.2 4.8 13.2 27.9 14.3 12.9 27.2 55.1 550 1219 27.1
Fur 2 14.7 7.2 19.9 42.7 32.7 20.8 53.5 96.2 1350 1098 14.0

3 20.8 9.6 26.5 58.1 58.7 29.7 88.4 146.5 2500 1098 9.2

1 1.9 1.9 11.0 15.6 2.9 2.6 5.4 21.1 110 1315 12.1
Kit 2 3.0 2.9 16.5 23.6 6.5 4.2 10.7 34.3 270 1162 6.6

3 4.2 3.9 22.0 31.7 11.7 5.9 17.7 49.4 500 1176 4.6

Although the designs generally cover all seven Keccak−f [b] instances, for
brevity, Table 2 reports the results for Keccak-f [200], for variable side-channel
protection orders. Recall that an implementation with d tiles achieves a side-
channel protection order of (d − 1). To conduct a consistent comparison of the
different designs, we fix m = 2 and warn the reader that this security parameter
does not correspond to a satisfactory practical protection against fault attacks.

The relevant metrics are the area of the implementation, the randomness
consumption, the maximum clock frequency fmax, the number of cycles nc (see
Table. 1) and a figure of merit (FoM) [25]. The area is reported in a hierarchical
fashion so as to reveal how the total area is apportioned among the major parts
of the design. The FoM jointly captures the performance in terms of speed and
area and is given by (b ·fmax)/(A ·nc), where A is the total area. As a measure of
throughput per area (higher is better), the expression for the FoM directly follows
from the reasoning that the throughput of Keccak-f is proportional to the
maximum clock frequency and the permutation width, but inversely proportional
to the number of cycles.
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Table 3: Comparison with side-channel only countermeasures. Note: the imple-
mentations of [21] are synthesized with UMC 90nm and clock gating

Keccak-f [1600] in NANGATE 45nm (m = 0)

AREA [kGE] Rand. fmax CyclesEvaluation Prep. Total
Order Design χ θ State Σ [bpc] [MHz] [/]

1

Blaze 145.1 12.8 33.7 199.7 231.0 430.7 16000 892 25
Parallel [21] 38.4 15.0 32.2 85.7 - 85.7 480 891 48

Parallel-3sh [10] 40.6 19.2 56.8 116.6 - 116.6 4 592 25
Kit 0.5 0.6 26.1 29.1 0.7 29.8 50 1538 10776

Serial-Area [21] 0.4 0.4 14.5 15.7 - 15.7 - 850 3160
Serial-3sh [10] 0.6 0.3 38.1 39.0 - 39.0 < 1 645 1625

2

Blaze 235.2 19.2 50.5 317.1 449.3 766.4 28800 884 25
Parallel [21] 114.0 22.5 51.1 188.1 - 188.1 4800 898 48

Kit 0.7 1.0 39.1 43.7 1.4 45.1 90 1351 10776
Serial-Area [21] 2.2 0.6 21.4 24.2 - 24.2 75 898 3160

Keccak-f [200] in NANGATE 45nm (m = 0)

1
Blaze 18.1 1.6 4.2 25.2 28.9 54.0 2000 892 19

5-10-5 [1] 73.4 14.0 11.9 99.3 - 99.3 - 395.25 9
6-6-6 [1] 44.6 11.3 14.2 70.1 - 70.1 - 436.7 9

4.1 Comparison with the literature

The literature already features protected implementations of Keccak, although
their protection scope is limited to side-channel analysis (SCA) in a weaker
attacker model [1,10,21]. Table 3 compares these implementations with the ones
introduced in this work, which are instantiated for m = 0, implying that the
final MAC checking phase can be avoided and all implementations are one cycle
faster. It should be stressed that this is not the intended setting for Capa,
but merely serves for comparison. When the fault protection capability is not
used, one should indeed opt for another countermeasure. Although there are
many trade-offs in the designs, the comparison features only the fastest and the
smallest design of every source to cover the limits of high speed and low area.
For this paper, the representative designs are Blaze and Kit, which adopt the
permutation width of the prior work they are compared to.

For the full permutation width b = 1600, Blaze is nearly twice as fast as
its competitors [10,21]. The price to pay is a larger area and a huge randomness
consumption. For the the b = 200 instance, Blaze has a competitive speed and
significantly smaller area than the unrolled implementations of [1] at the expense
of a substantially larger randomness cost.

The first-order protected Kit design is clearly smaller than the Serial-3sh im-
plementation [10] because the latter employs three shares. It would appear that
the row-based efforts in the Kit design yield a (much) larger implementation
than the Serial-Area implementation [21]. However, the difference can largely be
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attributed to (1) different technology libraries and (2) that the synthesis results
for Serial-Area are obtained with clock gating enabled. We verify this hypoth-
esis as follows for the first-order secure design. Without counting multiplexers,
accommodating the state using scan flip-flops (SFF) in NANGATE 45nm [31]
already has an area cost of 8.0 GE

SFF ·1600 ·2SFF = 25.6kGE. This is already in the
same order of magnitude as the first-order Kit design as reported in Table 3.

4.2 Cost scalability

Scaling with m. The implementation area is expected to scale linearly as a
function of the fault security parameter m. Incrementally increasing m incurs
an additional parallel computation in every arithmetic unit and an extra storage
unit for every shared value 〈x〉. The control overhead is not expected to scale
with m. To corroborate this intuition, we gather experimental evidence for Kit,
the design where the control logic has the largest relative size. Fig. 6a shows the
results for Keccak-f [200] with different values of d. Because of the near-perfect
linear relationship, we take it as a given and fix m in the discussions that follow.

The throughput is affected, albeit slighty, by the value of m. The number of
cycles is constant with respect to the fault security parameter m. Because the
tags corresponding to different keys never interact, no significant increase in the
critical path is to be expected either. However, Fig. 6b shows the contrary and
reveals a monotonous increase of the critical path with respect to m. It can be
attributed to the placement and routing of the cells.

0 1 2 3 4 5 6 7 8
0

50

100

150

m

T
ot
al

ar
ea

[k
G
E
]

d = 2

d = 3

d = 4

(a)

0 1 2 3 4 5 6 7 8

0.7

0.8

0.9

m

C
ri
ti
ca
lp

at
h
[n
s]

(b)

Fig. 6: (a) Keccak-f [200] implementation size as function of m, for the
Kit design. (b) The critical path increases monotonously with m

Scaling with d. The area of the evaluation stage scales linearly with the
SCA protection parameter d. The preprocessing stage, on the other hand, scales
asymptotically with d2 due to the presence of the passively secure multipliers.
Fig. 7 presents experimental evidence for these claims. The Fur and Kit de-
signs are particularly interesting for large SCA protection orders as the offline
part, i.e. the part of the implementation that scales with d2, is relatively small.
The impact on the throughput can be determined as follows. Similar to m, the
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SCA security parameter d does not affect the number of cycles of the algorithm.
To assess its influence on the critical path, consider Fig. 6b but now keeping m
constant and varying d. There seems to be some dependency on d but there is
no monotonous increase. The variations are likely due to placement and routing.
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Fig. 7: Area of the designs (Keccak-f [200]) w.r.t the SCA parameter d, for
m = 2. From left to right: total area, evaluation stage, preprocessing stage

Scaling with b. As the Keccak-f permutation width increases, a larger state
has to be processed every round. As a result, the designs either become substan-
tially larger (Blaze, Fast) or suffer a considerable throughput penalty (Fur,
Kit). Table 4 allows to interpret the influence of the permutation width on the
area of the implementation. The last column features the interpolated numbers.
In particular, the linear coefficient in b is of importance for this experiment.
As expected, the slice- and row-based designs scale much less dramatically than
the designs that consider the entire state or half of the state every round. The
critical path is unaffected by b. This makes sense as the fundamental operations
occur at the bit-level and remain unchanged. The throughput scaling can then
simply be deduced from the number of cycles in Table 1.

Table 4: Area scaling of the designs for Keccak-f [b] w.r.t. b
Area [kGE] of Keccak-f [b] for d = 2,m = 2

Design b = 200 b = 400 b = 800 b = 1600 Interpolation

Blaze 312.1 623.9 1247.5 2494.6 312.1 + 1.56(b− 200)
Fast 165.0 329.7 659.1 1317.8 165.0 + 0.82(b− 200)
Fur 55.1 72.6 107.5 177.2 55.1 + 0.087(b− 200)
Kit 21.1 30.9 50.5 89.8 21.1 + 0.049(b− 200)
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(a) Masks off (b) Masks on

Fig. 8: Results of the non-specific leakage detection (t-test) for the Kit design
of Keccak-f [200], where d = 3 and m = 2. Top row: average power trace
(arbitrary units). Second until last row: resp. 1st, 2nd and 3rd order t-test

5 Security evaluation

5.1 Side-channel resistance

To evaluate the side-channel resistance of the presented designs, we employ the
Test Vector Leakage Assessment (TVLA) method [4]. Specifically, we consider
a non-specific leakage detection test and adopt a t-test threshold of |t| = 4.5.
The evaluation platform is a Sakura-G board, equipped with two 45nm Xilinx
Spartan-6 FPGAs that respectively host the cryptographic implementation and
the control unit. By design, the board isolates the power supplies of the FPGAs,
mitigating the noisy influence of the control unit on the power consumption mea-
surements. The programming files for the cryptographic unit are obtained with
the keep_hierarchy constraint to avoid that sources of out-of-model leakage are
added by the synthesis of the design. The implementation is clocked at 3 MHz
and the masks are produced by a Keccak-f [1600]-based PRNG.

The evaluation is performed on the Keccak-f [200] instance of the Kit de-
sign. This design should exhibit the fastest evidence of leakage as it only features
a relatively small preprocessing phase, which contributes as a noise source in the
context of this experiment. Because the implementations are general in b, the
security claims carry over to the other Keccak-f [b] instances. The implementa-
tion is parametrized with d = 3 tiles (offering a second-order secure design) and
a fault security parameter m = 2. The specific value of m is unimportant, but is



14 Antoon Purnal, Victor Arribas, and Lauren De Meyer

non-zero to ensure that the synthesis and implementation tools do not trim the
preprocessing stage and MAC checks from the implementation.

To construct the power traces, an oscilloscope captures the voltage drop
over a 1Ω shunt resistor at 1GS/s for 10000 samples. The traces correspond
to the latter half of the ρ mapping and the first two slices of χ, obtaining a
representative part of the round function, with linear and nonlinear operations.
To ensure that the test setup is able to detect leakage, all masks are turned off
in the first iteration of the experiment. In the subsequent iteration, the masks
are turned on. The leakage reduction from the first experiment to the second on
can then be fully attributed to the Capa countermeasure.

The experiment where the masks are disabled, shown in Fig. 8a, shows serious
leakage. Already after the first batch of 15000 traces, |t| amply exceeds the
threshold of |t| = 4.5. This observation validates that the measurement setup is
reliable. When activating the masks, the t-test reveals no first-, second- or third-
order leakage when presented 80 million traces (Fig. 8b). Although we do not
claim that the implementation with three shares is secure against third-order
attacks, no leakage is apparent from the statistical evidence contained within
the supplied traces. This can be attributed to the measurement noise.

In Fig. 8b, the second-order t-test can be seen to approach the threshold value
of t = ±4.5. To provide reassurance that this artefact stems from statistical vari-
ations as opposed to genuine leakage, Fig. 9 shows the maximum |t|-values over
time. It can be seen to fluctuate around the threshold but no steady increase in
its value is recognizable. In conclusion, the experiment does not provide evidence
of second-order leakage.
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Fig. 9: Maximum t-test value over time

5.2 Fault resistance

Resistance against fault attacks is difficult to evaluate as currently no established
formal verification procedures exist. For a theoretical discussion on the fault
resistance of Capa, we refer to [36]. While not conclusive, we gain confidence in
the implementation by experimentally verifying the fault detection probability.
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Table 5: Experimental fault resistance results
m = 2 m = 4 m = 6 m = 8

# valid 〈f〉 32 512 8192 131072
# detected 〈f〉 24 480 8064 130560

Modelling the attacker. Recall that Capa considers the tile-probe-and-fault
model, allowing the adversary to fault arbitrary bits in the implementation,
given that at least one tile is not faulted nor probed. The adversarial goal is
to introduce a fault f in the computations. To this end, she guesses a valid
shared representation 〈f〉, denoted a fault vector, consisting of d(1 + m) bits.
This results in 2d(1+m) possible fault vectors. In GF (2), half of these correspond
to f = 0 and are hence excluded. The attacker can simultaneously fault at several
interesting locations in the implementation (preprocessing, the linear θ mapping,
the MAC check and the S-box) but will stick to one guess of the MAC key;
otherwise she will be detected with probability one. To cover the DFA attacks
on Keccak [2], we inject the faults in the penultimate round. We modify the
HDL implementation in the targeted modules to introduce the fault vectors as
additive differences as done in [15]. We simulate the design with GHDL 0.36-dev.

Experimental results. We experimentally validate the claimed fault detection
probability for the first-order (d = 2) Keccak-f [200] Kit implementation with
m ∈ {2, 4, 6, 8}. The results can then be extrapolated to larger m as both Capa
and the Kit implementation itself are generically scalable in m. For these rela-
tively small values of m, we need not follow a probabilistic approach. The fault
coverage can be trivially parallelized and we can exhaustively cover all valid fault
vectors in a few hours. This deterministic experiment is successful if the fraction
of detected faults is exactly equal to 1 − 2−m. Table 5 covers the experimental
results and demonstrates that the implementation is sound.

6 Conclusion

Following the Capa countermeasure methodology, this paper reports the first
Keccak implementations with resistance against combined side-channel and
fault attacks. The fastest design competes with or even outperforms the state of
the art in side-channel protected designs. As a drawback, the area and random-
ness requirements are prohibitively large. The smaller designs of this work have
more attainable requirements, but incur a considerable throughput penalty. All
four approaches are general in the Keccak permutation width b, and scalable in
the number of tiles d and the fault security parameter m. We have presented and
validated the scaling laws as a function of these parameters. An advanced leakage
detection test on the most intricate implementation of this paper has validated
our confidence in its SCA resistance. The soundness of the implementation with
respect to fault attacks has been supported by simulation.
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